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ABSTRACT

Finding an optimal strategy at a minimum cost to efficiently disintegrate a harmful network into isolated components is an important and
interesting problem, with applications in particular to anti-terrorism measures and epidemic control. This paper focuses on optimal disinte-
gration strategies for spatial networks, aiming to find an appropriate set of nodes or links whose removal would result in maximal network
fragmentation. We refer to the sum of the degree of nodes and the number of links in a specific region as region centrality. This metric
provides a comprehensive account of both topological properties and geographic structure. Numerical experiments on both synthetic and
real-world networks demonstrate that the strategy is significantly superior to conventional methods in terms of both effectiveness and effi-
ciency. Moreover, our strategy tends to cover those nodes close to the average degree of the network rather than concentrating on nodes with
higher centrality.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0046731

Beneficial networks are the most frequently encountered class of
networks. We hope to ensure their continuous, stable, and effec-
tive operation through various means, such as optimized design
and coordinated control. However, we also need to find efficient
strategies to break harmful networks down. With these aims in
mind, this paper introduces a method based on region centrality
for disintegration strategies in spatial networks.

I. INTRODUCTION

Over the last few decades, there has been increasing interest
in the behavior of complex networks, particularly with regard to
exploring the general laws of the networks that are widespread in
nature and society.1,2 Although networks can be considered to be
like transportation systems that make the world more closely con-
nected, with all the advantages that this provides, there are also
undesirable aspects of this connectivity. The most important exam-
ples of this are terrorist and disease transmission networks.3,4 How to
effectively disintegrate such harmful networks through an optimal
removal strategy has become an urgent problem.5,6

The impact on network integrity of the removal of a single
node is limited. However, if multiple nodes or links in a network

are removed, this may divide the network into several indepen-
dent internally connected components.7,8 Therefore, the effective-
ness of network disintegration is influenced by network structure
and depends on the removal strategy employed. Albert et al.9 and
Holme et al.10 found that scale-free networks are robust to “ran-
dom removal” but are vulnerable to “intentional attacks” based
on degree centrality. As the essence of network disintegration is
a combinatorial optimization problem, there have been propos-
als, mainly from the field of operations research, that the optimal
network disintegration solution could be found by solving a mathe-
matical programming model.11,12 In the case of large-scale networks,
attempts can be made to remove nodes (links) one by one in
descending order by calculating the centrality of nodes in terms, for
example, of degree,9,10,13 betweenness,10,14 k-core,15 closeness,16 and
subgraph centrality.17 However, a set composed of a single important
node (link) may not be the essential set of nodes (links). There-
fore, alternative network disintegration methods have been pro-
posed that are based on heuristic algorithms. Morone and Makse18

and Mugisha and Zhou19 introduced the collective influence (CI)
algorithm, which uses the direct and indirect neighbors of each
node in a specific range to obtain a quantitative measurement of
the influence of the nodes and then eliminates nodes based on the
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descending order of their CI values. Zhou20 and Mugisha and Zhou19

considered a belief propagation-guided decimation (BPD) prob-
ability model to measure the removal probability of each node
in a network. Other heuristic algorithms have also been intro-
duced to search for key players in a network, such as a branch
removal algorithm,21 CoreHD,19,22 and a min-sum algorithm.23 In
recent years, many evolutionary algorithms have been applied to the
network disintegration problem. Wu’s group24–27 studied the opti-
mal disintegration strategies of complex networks for undirected,
directed, and multilayer networks based on tabu search. Ventresca28

presented a simulated annealing algorithm to solve the network
disintegration problem. Deng et al.29 developed a disintegration
optimization approach based on a genetic algorithm with a cost
constraint model. With the rapid development of machine learn-
ing, Fan et al.30 introduced a deep reinforcement learning algorithm
into the network disintegration problem and proposed the FINDER
algorithm.

The spatial network is a topological network embedded in the
Euclidean plane. It is composed of nodes and links with geospa-
tial attributes, and its topological characteristics are no different
from the original topological network.31,32 There has also been exten-
sive study of the invulnerability of spatial networks. In particu-
lar, research on infrastructure networks based on real geographic
attributes has developed rapidly. Neumayer and co-workers33,34 pro-
posed several methods to deal with purely geometric problems, such
as those concerning link position, length, and mutual relationships,
in the context of the American fiber network and provided an effec-
tive method to identify critical areas of this complex spatial network.
Agarwal et al.35 presented a new hippodrome model based on Neu-
mayer’s critical region recognition algorithm and further proposed
a new general probabilistic model based on this method.36 Peng et
al.37 considered a method to search key nodes and critical areas
based on network node failure. Deng et al.27 introduced the use of
the tabu search algorithm into the spatial network disintegration
problem.

The studies listed above focus on finding the vital links or nodes
rather than building a model to evaluate the invulnerability of the
spatial network. Furthermore, the majority of previous studies of
network disintegration strategies with spatial information have con-
sidered the destruction mode on small-scale networks. However,
the scale of network systems has increased dramatically in recent
decades, and conventional algorithms may have too high a compu-
tational cost or may suffer from deterioration in performance when
applied to such large-scale networks. Inspired by the centrality mea-
sures applied in topology networks, here we extend them to spatial
networks and propose regional centrality. We define region cen-
trality as the sum of centrality measures of all nodes or links in a
specific area. In this paper, we introduce a disintegration strategy
based on region centrality to search for the critical areas of a net-
work at a minimal increase in time cost compared with that of a
conventional spatial network optimization model with multiple dis-
integration circles. This strategy allows linear processing for node
sets or link sets in the disintegration circles and is also applicable
to large-scale networks. Furthermore, to more clearly illustrate the
underlying principles of this disintegration strategy and the network
changes to which it leads, we introduce several additional metrics to
explore the node features of the strategy.

The remainder of the paper is organized as follows. In Sec. II,
we provide the definitions of the spatial network disintegration
model with multiple disintegration circles. In Sec. III, the optimal
disintegration strategy in a spatial network based on region central-
ity is explained. In Sec. IV, this strategy is applied to several synthetic
network models. We then evaluate the strategy on two real-world
networks in Sec. V. Finally, in Sec. VI, we conclude the work and
discuss some possible extensions.

II. SPATIAL NETWORK DISINTEGRATION MODEL WITH

MULTIPLE DISINTEGRATION CIRCLES

A. Spatial network disintegration model

In simple terms, a network is a collection of nodes joined
together in pairs by links. It can be described as an undirected
and unweighted graph G = (V, E), where V is a finite nonempty
set of nodes and E ⊆ {(u, v) | u, v ∈ V} is the set of links between
the nodes. Let N = |V| be the number of nodes, where the differ-
ent nodes are labeled as v1, v2, . . . , vN. The degree of the ith node
in the network is denoted by ki. We denote the number of links by
W = |E|, which represents the total number of links. The most com-
mon way to represent the basic structure of a graph is the adjacency
matrix A(G) = (aij)N×N

, its elements being aij = aji = 1 if node vi

and node vj are connected.
We map the network in a coordinate system and define (cij)N×2

as the coordinate matrix of G, where (ci1, ci2) are the coordinates
of node vi.27 To facilitate data processing, we use normalized net-
work coordinates to build spatial network disintegration models as
follows:

c̃ij =
cij − min(C(:, j))

max(C(:, j)) − min(C(:, j))
, j = 1, 2. (1)

Next, we assume the disintegration area of the spatial network
to be a circle o and then define the coordinate matrix of this circle as
follows:

O(G) = (ok1, ok2), k = 1, 2, 3, . . . , K, (2)

in which (ok1, ok2) are the center coordinates of the circle ok, and
K is the number of circles. We also assume that the radius of the
disintegration circle is r. We remove from the network all nodes that
lie in the circle and those links that are connected to these nodes.

The location of several disintegration circles in the network
should be determined first, based on normalized network coor-
dinates. It is a very time-demanding computation to search for
multiple optimal center positions. In this paper, we assume that the
spatial network coordinate system is divided into w × w grids, where
the center of the disintegration circle is located at the intersection
of the grids. Therefore, there are M = w2 optional positions for the
center of the circle, where M represents the number of potential
positions at which the center can be placed.

Based on the above assumptions, we define the spatial net-
work disintegration strategy with multiple disintegration circles as
X = [x1, x2, . . . , xM], its elements being xi = 1 if the correspond-
ing ith circle belongs to O(G), and xi = 0 otherwise. We then get
the number of disintegration circles as K =

∑M
i=1 xi. Moreover, we

assume that V̂ ⊆ V is the set of nodes located in multiple disin-
tegration circles, n = |V̂| is the number of removed nodes, and
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FIG. 1. Schematic of the spatial network disintegration model with multiple disintegration circles: (a) initial network, where the red circles represent the disintegration circles
with radius r and the blue nodes represent the nodes to be removed; (b) network remaining after disintegration.

Ĝ = (V − V̂, Ê) is the network that remains after removal of nodes
in V̂.

Figure 1 displays the process of disintegrating the spatial net-
work using this method. The network contains 24 nodes and 27
links and has been embedded in the normalized network coordinate
system. We randomly selected two disintegration circles with center
coordinates (0.44, 0.40) and (0.800, 0.473), respectively, and radius r.
The nodes v1, v2, v3, v4, v5, v6, and v7 are located in the disintegration
circles, and so these nodes and the links connected to them will be
removed from the network.

B. The measure function

1. Metrics to measure the effect of disintegration

In this paper, we denote by 0 the function that measures net-
work performance. The removal of essential nodes may have a
significant impact on the network, and so network performance
decreases as a result of the network disintegration process. We
assume that the disintegration effect is determined by the differ-
ence between the measure function of the initial network and that
of the network after node removal, i.e., 8(X) = 0(G) − 0(Ĝ) ≥ 0.
In summary, the size of 8(X) reflects the destructive effect of the
network disintegration strategy.

There are many ways to quantify the structure of a network.
One key quantity is the relative size of the largest (giant) connected
component (LCC), which is defined as follows:

LCC =
C(Q)

N
, (3)

where C(Q) is the number of nodes in the LCC of the network
after removal of the node set Q. As the number of removed nodes
increases, the network will eventually degenerate into many discon-
nected subgraphs, and so the relative size of the LCC will gradually
decrease until the LCC vanishes, i.e., LCC = 0.

Second, we chose natural connectivity (NC) to measure net-
work performance. This metric is a way to quantify the spectral
robustness of a complex network, and it has an exact physical mean-
ing and a simple mathematical formula.38 The average eigenvalue of
the network adjacency matrix is defined as follows:

NC = ln

(
1

N

N∑

i=1

eλi

)
, (4)

where λi is the ith largest eigenvalue of the adjacency matrix A(G).
We aim to achieve the best effect of network destruction

by searching for the optimal position of K disintegrating circles.
Therefore, the spatial network disintegration model with multiple
disintegration circles can be expressed as follows:

max 8(X = [x1, x2, . . . , xM]),

s.t.

{
K =

∑M
i=1 xi,

xi = 0 or 1, i = 1, 2, . . . , M,

(5)

where xi represents the potential center of the disintegration circle.
If the ith intersection point is selected as the location of the circle
center, then xi = 1, and xi = 0 otherwise. We have defined 8(X) as
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the metric to measure the disintegration effect, and our goal is to
find the optimal disintegration strategy to maximize 8(X).

2. Measures for node feature

To explore the mechanism of the spatial network disintegra-
tion strategy based on region centrality, we adopt several metrics to
investigate the features of network nodes.

(i) Impact measure, ξ : this metric is designed to measure the effi-
ciency of the exchange of information on the network, and it can
be used to carry out an accurate quantitative analysis of infor-
mation flow. The average efficiency of the network is defined
as

eff =
1

N(N − 1)

∑

i 6=j∈G

1

dij

, (6)

where dij is the shortest path length that contains the least num-
ber of links between two nodes vi and vj. The impact measure
that defines the network disintegration strategy is

ξ =
effG − effĜ

r
, (7)

where effG and effĜ are the average efficiencies of the initial net-
work G and the remaining network Ĝ, respectively. The higher
the value of eff, the better is the disintegration effect of the
corresponding method.

(ii) Average number of removed nodes, δ is

δ =
n

K
, (8)

where n is the total number of nodes removed from the network
and K is the number of disintegration circles.

(iii) Average degree of removed nodes, σ : define the state vector
of the node as C = [c1, c2, . . . , cN], where ci = 1 if vi ∈ V̂, and
ci = 0 otherwise. ki is the degree of node vi. The average degree
of removed nodes is then defined as follows:

σ =
1

n

N∑

i=1

ciki. (9)

(iv) Deviation of the degree of removed nodes from the average
degree, 2,

2 =
1

n

N∑

i=1

ci|ki − 〈k〉|, (10)

where 〈k〉 is the average degree. 2 measures the deviation
between the degree of the removed nodes and the average degree
of the network. The smaller the value of 2, the closer is the
degree of the removed nodes to the average degree.

III. DISINTEGRATION STRATEGY FOR SPATIAL

NETWORKS BASED ON REGION CENTRALITY

We divide the spatial coordinate system into w × w grids,
and the problem is to find the optimal locations of K disinte-
gration circles in the coordinate system to maximize 8(X). The

degree-based strategy is the most widely used network disintegra-
tion method. We can take the nodes with the high value of degree
centrality as the centers of the disintegration circles. The between-
ness also describes the importance of different nodes as a “bridge”
in the network, i.e., the abilities of nodes or links to control the
information of the network. A more traceable option is to remove
the node with the highest degree or betweenness centrality with
recalculation.

To obtain a better disintegration effect, we propose a solution
based on region centrality. We define region centrality as the sum
of centrality measures of all nodes or links in a specific area. Specif-
ically, the region centrality is denoted as the sum of node degrees
or the sum of links located within the circle (including the fron-
tier of the circle) in spatial networks. Then, the spatial network is
embedded in the normalized network coordinate system, and the
parameter is set as w = 100 in this paper, which is equivalent to
there being M = w2 = 10 000 options for the center position of the
disintegration circle in the coordinate system.

Experimentally, we have found that the K disintegration circles
would be concentrated in several network regions. Figure 2 visual-
izes the situation. The network in the figure is consistent with Fig. 1.
It shows the case where two disintegration circles with different cen-
ter positions contain the same node. The nodes v4, v6, v7, and v8 and
the corresponding links will be removed. In this example, the sum
of the node degrees in the two circles is the same, i.e., the disinte-
gration efficiency of the two circles is equal to one. Similarly, for the
disintegration strategy based on the number of links, this situation
will also affect the disintegration effect.

FIG. 2. Two disintegration circles with different center positions contain the same
nodes. The blue circle and the red circle are different disintegration circles of
radius r , and the sky-blue nodes are located in these two disintegration circles.
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Therefore, inspired by the network attack strategy based on
recalculated degree or betweenness at every removal step, we intro-
duce a spatial network disintegration strategy with multiple disinte-
gration circles based on the recalculated sum of node degrees (RSD)
and the recalculated sum of links (RSE). First, we define a disinte-
gration circle of radius r as Cr. Then, we consider the nodes that
are located in the circle (including the boundary of the circle) and
assign to circle Cr the sum of node degrees (SD) strength at level r
according to the following equation:

SDr(l) =
∑

vj∈Cr(l)

kj, l = 1, 2, . . . , M, (11)

where Cr(l) represents the lth disintegration circle of radius r, and kj

is the degree of node vj located in the circle Cr(l).
Likewise, we consider the links that are located in the circle

(including links that are tangent to the circle) and assign to circle
Cr the sum of links (SE) strength at level r according to the following
equation:

SEr(l) =
∑

ej∈Cr(l)

ej, l = 1, 2, . . . , M. (12)

If the link of the network lies in the disintegration circle, then we set
ej = 1; otherwise, ej = 0.

The steps of the spatial network disintegration strategy based
on region centrality are as follows:

Step 1: In the beginning, all nodes in the network are present: vj = 1
and ej = 1 for all j. Then, traverse the optional locations of
M = 10 000 circle centers in the coordinate system. For the
RSD method, calculate the sum of the node degrees in each
disintegration circle, SDr(l). For the RSE method, calculate
the number of network links included in each disintegration
circle, SEr(l).

Step 2: Arrange the sum of node degrees or the number of links in
descending order. Then, remove all nodes in the disintegra-
tion circle vj ∈ Cr(l) with highest SDr(l) and set vj = 0, or
remove all links in the circle ej ∈ Cr(l) with highest SEr(l)
and set ej = 0. If there is more than one disintegration circle
with the highest SDr(l) or SEr(l), then randomly select one
of these circles and remove the nodes or links in that circle.

Step 3: Calculate the relative size of the LCC and the NC of the
remaining network after removing these nodes or links. Go
to the next step.

Step 4: Calculate the sum of the node degrees SDr(l
∗) or the number

of links SEr(l
∗) corresponding to each candidate disintegra-

tion circle of the remaining network, and then remove the
nodes or links in the circle with highest SDr(l) or SEr(l).

Step 5: Go back to step 3. Repeat the procedure until K disintegra-
tion circles are found or the upper limit of the cost constraint
is reached.

IV. APPLICATIONS TO SYNTHETIC NETWORKS

In this section, to demonstrate the applicability of the proposed
spatial network disintegration strategy based on region centrality,
we first apply it to some synthetic networks: the Erdös–Rényi (ER)
model of random networks,39 the Newman–Watts (NW) model of

small-world networks,40 and the Barabási–Albert (BA) model of
scale-free networks.13 Although random network models cannot
accurately describe most real-world networks, such models can pro-
vide us with an essential reference when discussing the properties of
real networks. Moreover, the NW model extension to the ER model
successfully explains the coexistence of a high clustering coefficient
and a low average geodesic length (small-world behavior) that is
more in line with the characteristics of a real-world network. The
construction of the ER and NW models is reflected in how links
are placed between a fixed number of nodes. In contrast to these
two models, the essence of the BA model is the inseparability of the
structure and evolution of the network.

Many research works have studied the problem of network spa-
tialization, which aims to transform the network into a map.41,42 We
generate spatial networks with geographical characteristics by ran-
domly assigning coordinates to network nodes for ease of analysis.
In the ER model, we fixed the number of nodes to N = 200 and
assigned each node a horizontal and vertical coordinate in the range
[0,1], and then map the nodes to a rectangular coordinate system
with the coordinate range [0,1]. The nodes of the NW network and
BA network mentioned later are mapped to the normalized network
coordinate system in the same way. Subsequently, with a probabil-
ity of 0.04, we link two randomly selected nodes with an link, and
we perform this process for all node pairs of N(N − 1)/2 to create
a geographically characterized ER spatial random network. During
the generation of the model, multiple links between two nodes are
not allowed. Since the Watts–Strogatz (WS) model can produce iso-
lated nodes, we adopt the NW model, in which only shortcuts are
added and no links are removed from the original network. First, we
create a ring over N = 200 nodes, and we then connect each node in
the ring with its four nearest neighbors. Then, for each link (u, v) in
the network, with a probability of 0.5, we add a new link (u, w) with a
randomly chosen existing node w. Finally, we embed all nodes in the
normalized network coordinate system. As for the BA model, a net-
work of N = 200 nodes is grown by attaching new nodes, each with
three links that are preferentially attached to existing nodes with a
high degree. Similarly, nodes in the network are normalized.

We first show in Fig. 3, plots of the destructive effect of differ-
ent network disintegration methods on the three synthetic networks
as a function of the number of disintegration circles. We compare
the spatial network disintegration strategy based on region central-
ity (using the recalculated sum of node degrees and recalculated
sum of links, RSD and RSE) with five other methods: degree-core
removal (DC), betweenness-core removal (BC), eigenvector-core
removal (EC), recalculated-degree removal (RD), and recalculated-
betweenness removal (RB). The basic idea of eigenvector centrality
is that the node centrality is a function of the adjacent nodes’ central-
ity. For DC, BC, and EC strategies, we select the nodes’ coordinates
in the descending order of three metrics in the network as the cen-
ter locations of the disintegration circles and then remove all nodes
in the corresponding circle one by one starting from the node with
the highest degree, betweenness, or eigenvector centrality. Simulta-
neously, the RD and RB methods use the recalculated degree and
betweenness centrality at every step to determine the circle’s posi-
tion and then the nodes located in the circle are removed circle
by circle. For the RSD and RSE strategy, we put the center of the
disintegration circle at the intersection of the 1000 × 1000 grid, and
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FIG. 3. Evaluation of different network disintegration methods on ER [(a) and (d)], NW [(b) and (e)], and BA [(c) and (f)] synthetic networks, for different numbers of dis-
integration circles. The methods are degree-core removal (DC, violet lines), betweenness-core removal (BC, sky-blue lines), eigenvector-core removal (EC, black lines),
recalculated-degree removal (RD, brown lines), recalculated-betweenness removal (RB, dark-green lines), recalculated sum of node degrees (RSD, blue lines), and recal-
culated sum of links (RSE, red lines). In (a)–(c), the destructive effect on the network is measured by the function Φ(X)LCC, representing the deterioration in the largest
connected component. In (d)–(f), the destructive effect is measured by the function Φ(X)NC, representing the deterioration in natural connectivity.

then remove the nodes or links within the disintegration circle with
the highest SDr

(
l
)

or SEr

(
l
)

at every step. We fix the circle radius
to r = 0.04. As can be seen from Fig. 3, our proposed strategy has a
much better destructive effect on the synthetic networks for differ-
ent numbers of disintegration circles than the other five methods.
In particular, the destructive effect of the method based on the RSE
dramatically exceeds those of the other methods. It also can be seen
that when the destructive effect on the network is measured in terms
of the LCC, if the number of circles satisfies K > 7, then for the
RSE method, the corresponding Φ(X)LCC → 1 indicates that the
largest connected component vanishes, i.e., LCC = 0, which also
means that the network has been completely disintegrated. Further-
more, we show in Fig. 4 the destructive effect of the seven methods
on the three synthetic networks as a function of the radius r. We
fix the number of circles to K = 10. It can again be seen that our
strategy consistently outperforms the other methods in different
application scenarios, with the RSE method having the outstanding
performance.

V. APPLICATIONS TO REAL-WORLD NETWORKS

A. Data description

Since synthetic networks cannot fully describe the various
properties of real-world networks, to verify the applicability of the
proposed network disintegration strategy to realistic scenarios, we

evaluate it on two real-world networks of different types: the Amer-
ican air network (http://vlado.fmf.uni-lj.si/pub/networks/data/)
and the Minnesota road network (http://networkrepository.com/
index.php). The networks are constructed as follows. In the Amer-
ican air network, nodes represent airports, and links represent the
routes between airports. The Minnesota road network is composed
of town nodes and links representing roads between towns. More-
over, the longitude and latitude coordinates of the airports and the
towns are normalized by Eq. (1), and these normalized node coor-
dinates are embedded in the rectangular coordinate system in the
range [0, 1]. Table I shows the basic topological characteristics of the
two real-world networks.

We apply the spatial network disintegration strategy to these
real-world networks, not with the aim of attacking them, but rather
to use the strategy to find the vital nodes or links in a network more
efficiently. In other words, an attack on these specific sets of nodes
or links may cause the network structure to disintegrate into many
small isolated subcomponents. On the other hand, the strategy can
also provide theoretical support for strengthening some nodes, links,
or areas of the network.

B. Results

To more clearly illustrate the relative locations of the disin-
tegration circles in the spatial networks, we visualize these circles
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FIG. 4. Evaluation of different network disintegration methods on ER [(a) and (d)], NW [(b) and (e)], and BA [(c) and (f)] synthetic networks, for different values of the radius r .
The methods are degree-core removal (DC, violet lines), betweenness-core removal (BC, sky-blue lines), eigenvector-core removal (EC, black lines), recalculated-degree
removal (RD, brown lines), recalculated-betweenness removal (RB, dark-green lines), recalculated sum of node degrees (RSD, blue lines), and recalculated sum of links
(RSE, red lines). In (a)–(c), the destructive effect on the network is measured by the function Φ(X)LCC, representing the deterioration in the largest connected component.
In (d)–(f), the destructive effect is measured by the function Φ(X)NC, representing the deterioration in natural connectivity.

in Fig. 5. We compare the RSD and RSE disintegration strat-
egy with five other methods: degree-core removal, betweenness-
core removal, eigenvector-core removal, collective influence-core
removal, and non-backtracking-core removal (NBC).43 The CI is
a metric for identifying influential spreaders in the network and
quantify the propagation ability. Non-backtracking centrality is a
spectral centrality metric based on the non-backtracking matrix,
which solves the problem that most of the centrality’s weight of
eigenvector centrality concentrates on a small number of nodes. The
node with the greatest value determined by the five strategies is taken
as the center of the disintegration circle. For the CI strategy, we take
a ball of unit radius around every node. We fix the number of circles
to K = 10. For both the American air network and the Minnesota
road network, the positions of the circles determined by the different

TABLE I. Basic statistics for the two networks under consideration, where N and W

are the numbers of nodes and links, d and 〈k〉 are the density and average degree of

the network, D is the diameter, and C is the average clustering coefficient.

Network N W d 〈k〉 D C

American air 332 2126 0.038 69 12 6 0.6252
Minnesota road 2642 3303 0.000 95 2 99 0.0160

disintegration strategies overlap with each other, and so the distri-
butions of all the circles cannot be shown on the figure. As can be
seen, since the circle center determined by the DC, BC, EC, CI, and
NBC methods is located at the node, the distribution of the circle
in the network will not change significantly with increasing radius.
Our proposed strategy based on region centrality is more likely to
find circles covering a greater number of nodes or links than the
five methods based on centrality metrics. With increasing radius, the
circles identified by our strategy are more clustered in areas of the
network where there are more nodes or links. A more interesting
phenomenon that we can observe from Fig. 5 is that the red cir-
cles and blue circles in the network are more widely distributed, and
most of the circles are located in areas with a higher density of nodes
or links. By contrast, the remaining circles cover areas with sub-
optimal network connectivity. Although the distribution of circles
determined by the BC method is also not concentrated, the number
of circles located in areas with higher network density is relatively
small, and these are the core areas of the network.

In Fig. 6, we show the disintegration effect of the seven meth-
ods on the American air network and Minnesota road network as
a function of the radius r. It can be seen that the performance of
the disintegration strategy based on region centrality is significantly
better than those of the other methods on two real-world networks
for both measure functions and for different radii, especially for
the Minnesota road network. These results show that our strategy
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FIG. 5. Location of disintegration circles of radii r = 0.005,
0.01, 0.02, and r = 0.04 in (a) the American air network
and (b) the Minnesota road network for the seven meth-
ods: degree-core removal (violet circles), betweenness-core
removal (sky-blue circles), eigenvector-core removal (pink
circles), collective influence-core removal (yellow circles),
non-backtracking-core removal (dark-green circles), recalcu-
lated sum of node degrees (blue circles), and recalculated
sum of links (red circles).
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FIG. 6. Evaluation of different network disintegration methods on the American air network [(a) and (c)] and the Minnesota road network [(b) and (d)] for different values of
the radius r . The methods are degree-core removal (DC, violet lines), betweenness-core removal (BC, sky-blue lines), eigenvector-core removal (EC, black lines), collective
influence-core removal (CI, brown lines), non-backtracking-core removal (NBC, dark-green lines), recalculated sum of node degrees (RSD, blue lines), and recalculated sum
of links (RSE, red lines). In (a) and (b), the destructive effect on the network is measured by the function Φ(X)LCC, representing the deterioration in the largest connected
component. In (c) and (d), the destructive effect is measured by the function Φ(X)NC, representing the deterioration in natural connectivity.

can achieve better disintegration effects on spatial networks than
conventional methods. Table II shows the connected component
characteristics of the remaining networks after the two real-world
networks are attacked. It can be seen that the RSD strategy tends to
break the network into more connected components with a size not
larger than the RSE strategy. In terms of the effects of network dis-
integration, the RSD strategy is superior to the RSE strategy for two
considered real-world networks.

To further explore the disintegration mechanism of our strat-
egy and the resulting network changes, we applied the four measures
introduced in Sec. II B 2 to evaluate the features of the nodes
removed from the network with different strategies under different
disintegration circle radius, as shown in Fig. 7. It can be seen from
the changing pattern of the histograms that, except for the average
number of removed nodes, all measures exhibit a decreasing trend

with increasing radius, which can be interpreted as meaning that a
larger radius of the disintegration circle can cover more nodes or
links, particularly for the implementation of the RSD and RSE strate-
gies in the American air network. Although more nodes or links
are removed using this strategy, the average degree of the removed
nodes is smaller than with other methods, indicating that the loca-
tion of the circles determined by this strategy will also include some
nodes with low centrality. With regard to the impact measure, when
our strategy is applied to the American air network, it outperforms
other methods for large values of the radius, and its performance
on the Minnesota road network is significantly better than that of
other methods for all values of r considered, which indicates that
the spread of information in the network is more hindered. The
traffic between cities is severely affected in both the real air and
road networks. To a certain extent, our strategy also provides a
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TABLE II. Connected component characteristics of the remaining networks under

consideration, where NCC and C(Q) are the numbers of connected components and

the number of nodes in the largest connected component,8(X )LCC is the deterioration

of the relative size of the largest connected component.

Network Metric RSD RSE

American air NCC 30 3
C(Q) 26 123

8(X)LCC 0.9217 0.6295
Minnesota road NCC 11 3

C(Q) 1469 1620
8(X)LCC 0.4432 0.3861

reference for city nodes and traffic links that need to be protected,
with these cities and the routes or roads between them correspond-
ing to nodes or links located within the circle in the spatial network.
At the same time, with our strategy, the deviation of the degree
of removed nodes from the average degree is lower than for other
methods. The smaller this deviation, the more likely is the circle
determined by our strategy to cover those nodes close to the average
degree of the network than to be concentrated on nodes with higher
centrality.

VI. CONCLUSION AND DISCUSSION

Extensive numerical experiments on synthetic graphs and real-
world networks have demonstrated that a disintegration strategy
for spatial networks based on region centrality significantly out-
performs conventional methods based on centrality and heuristic
algorithms in terms of effectiveness and efficiency. This strategy
seeks to find a set of nodes or links that allow a network to be dis-
integrated into many small components in a more efficient way. We
define region centrality as the sum of centrality measures of all nodes
or links in a specific area. This strategy comprehensively considers
the topological properties and geographic structure of a spatial net-
work. The disintegration circles determined by this strategy tend to
cover those nodes close to the average degree of the network rather
than being concentrated on the nodes with higher centrality, which
naturally leads to a higher cost of disintegration. In addition, the dis-
tribution of circles in the network is relatively dispersed, and most of
the circles are located in areas with a higher density of nodes or links,
while the remaining circles cover areas with suboptimal network
connectivity.

The performance of the proposed strategy can be further
improved by considering other features of the nodes or links in the
disintegration circle to more effectively destroy the network struc-
ture. It might even be possible to avoid direct use of the disintegra-
tion circle model, which is an exciting area for further investigation.

FIG. 7. Evaluation by four statistical measures of the residual networks of the American air network [(a)–(d)] and the Minnesota road network [(e)–(h)] after attack by different
network disintegration methods for different values of the radius r . The methods are degree-core removal (DC, violet bars), betweenness-core removal (BC, sky-blue bars),
eigenvector-core removal (EC, black bars), collective influence-core removal (CI, brown bars), non-backtracking-core removal (NBC, dark-green bars), recalculated sum of
node degrees (RSD, blue bars), and recalculated sum of links (RSE, red bars). The measures used are the impact measure of disintegration in (a) and (e), the average
number of removed nodes in (b) and (f), the average degree of removed nodes in (c) and (g), and the deviation of the degree of removed nodes from the average degree in
(d) and (h).
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Finally, directed and weighted networks are both currently active
areas of research, and we hope to incorporate these types of spatial
networks in future work.
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