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Efficient disintegration strategies with cost constraint in complex networks:
The crucial role of nodes near average degree
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The study of network disintegration, including controlling disease spread and destroying terrorist
organizations, has wide application scenarios and attracts many researchers. In this paper, we
concentrate on the network disintegration problem with heterogeneous disintegration cost, where
the disintegration cost to eliminate each node might be non-identical. We first put forward a disin-
tegration cost model and an optimization model for disintegration strategy. Then, we analyze the
hub strategy, leaf strategy, and the average degree strategy to investigate the nodes tendency of the
optimal disintegration strategy. Numerical experiments in three synthetic networks and real-world
networks indicate that the disintegration effect of hub strategy drops gradually when the disintegra-
tion cost changes from homogeneity to heterogeneity. For the situation of strong heterogeneity of
disintegration cost of each node, average degree strategy achieves the maximum disintegration
effect gradually. Also, taking another perspective, average degree strategy might enlighten efficient
solutions to protect critical infrastructure through strengthening the nodes which are chosen by the

average degree strategy. Published by AIP Publishing. https://doi.org/10.1063/1.5029984

Various real-world systems can be studied by employing
complex network methods, examples including road
networks, airline networks, Communication networks,
collaboration networks, etc. A majority of these networks
are crucial to human life, and many studies have concen-
trated on methods to enhance their reliability. However,
there are still many networks that are harmful to human
life, such as disease spread networks and terrorist organi-
zations. The essential purpose of this work is to seek effi-
cient disintegration strategies in network disintegration
problem.

I. INTRODUCTION

In modern society, the targets and the connection forms
of the targets always form a complex network in network
disintegration problem, such as power grids,1 communica-
tion networks,2 and transportation networks.? Thus, it is
necessary to be able to determine the disintegration effect
that may be inflicted upon the networks by network disinte-
gration strategy. Apparently, network disintegration strategy
has broad applications; moreover, examples would include
destroying terrorist networks,® remedying financial crises,’
impeding the spread of rumors,® and blocking cancer net-
works,” which have received growing attention.

Regarding network disintegration, the challenge is to
identify the optimal set of nodes such that their removal
could achieve the maximum disintegration effect. An effi-
cient way of disintegrating a network is according to the
structural properties of nodes, the so-called centrality-based
disintegration strategies. The most straightforward and
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fundamental disintegration strategy is the degree centrality
strategy,® in which nodes are disintegrated by the declining
order of the original degree of network, nevertheless, it is
less relevant since the removal of a node having a few high
degree neighbors may have much more destructive disinte-
gration effect than a node having a larger number of low
degree neighbor.”'” Although some well-known global
properties such as betweenness centrality,'""'? coreness,'’
and subgraph centrality,"* which can achieve better disinte-
gration effect, due to the very high computation complexity,
they are not easy to implement in large networks. To achieve
better disintegration effect, other methods were proposed.
For example, Chen ef al.'® put forward the equal graph parti-
tioning (EGP) immune approach. The fundamental intention
of EGP focused on disintegrating the network into some con-
nected components with equal dimension. Deng er al.'® pre-
sented an optimization frame to seek an optimal disintegration
strategy and applied the intelligent optimization algorithm to
solve the optimization model. Besides, it has received more
attention on imperfect information strategy. For instance, Li
et al.'” concentrated on the network disintegration approaches
with incomplete network structure. The study assumed that
few parts of the network structure could be acquired. Tan
et al."® put forward link prediction method to analyze disinte-
gration approach with incomplete information.

Nevertheless, regarding the present studies, a majority of
studies on network disintegration problem supposed that the
disintegration cost to remove every node is equal. Actually,
the disintegration cost of each node might be heterogeneous
in real-world scenarios. On the one hand, some researchers
have studied the counterterrorism problem considering the
budget constraint problem.'® The situation is similar in sup-
pressing the epidemic spreading within a fixed vaccination
budget.20 On the other hand, it is realistic to assume that
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different target has a different value for both the attacker and
the defender. For example, New York City would be valued
much higher than a desert area.”’ Many researchers assumed
that the defender and the attacker have the same target valua-
tions;22’23 therefore, it is easy to know that the disintegration
cost assigned to critical infrastructure would be much more
than some regular auxiliary facilities. In this study, we will
concentrate on the network disintegration problem consider-
ing the heterogeneous costs. Then, we present three typical
disintegration strategies: Hub Strategy (HS), Leaf Strategy
(LS), and Average Degree Strategy (AS), to compare the cor-
responding disintegration effect. In the traditional view,
nodes with the high attribute value would be selected to be
removed preferentially. However, hub nodes may not be the
best choice concerning the heterogeneous disintegration
costs.

This study is organized as follows: The disintegration
cost model and the optimization model for network disinte-
gration problem are shown in Sec. II. In Sec. III, we intro-
duce the measure of network performance. The experiments
in three types of model networks and real-world networks
are presented in Secs. IV and V, respectively. Finally, we
show the conclusions and discussions in Sec. VI.

Il. COST MODEL AND OPTIMIZATION MODEL FOR
DISINTEGRATION STRATEGY IN COMPLEX
NETWORKS

Complex networks can be formed as an undirected
graph G(V, E), in which V is the node set, and E CV x V
is the edge set. Let N = |V| be the number of nodes and
W = |E| be the number of edges, respectively. Denote by
A(G) = (ajj)yy the adjacency matrix of G, in which a;;
=aj; = 1 once v; and v; are connected. Besides, let k; be the
degree of node v;. The value of k; is the number of adjacent
edges of node v;.

In this paper, the target of removal approach focuses on
node removal, and we assume that the adjacent edges will be
removed when the corresponding node is removed. Denote
by c¢; the disintegration cost of corresponding node v;. Note
that many researchers assumed that the defender and the
attacker have the same target valuations;zz’23 therefore, it is
easy to know that the disintegration resource assigned to crit-
ical infrastructure would be much more than some regular
auxiliary facilities. Thus, the linear function might not be
sensitive enough to define the disintegration cost of every
target. In this paper, we suppose that the disintegration cost
c; of each node is a function of node property r;

i =17, e))

in which we call p >0 the cost-sensitive parameter. We can
choose one of the node properties as r;, examples including
the degree and the betweenness. Specifically, the higher
value of p indicates that the disintegration cost is more
sensitive.

In real-world scenarios, the total disintegration budget is
limited. Denote by C the cost constraint. In this paper, we
define it in the following form:
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in which we call « € [0, 1] the cost-constraint parameter.
The higher value of « indicates that the constraint of disinte-
gration budget is looser.

Let V CV be the removed nodes set. Denote by G
= (V —V,E) the network after disintegration. Denote by
n= \V| the number of removed nodes. Let X =[x}, xp, ...,
xy] be the disintegration strategy, in which x; = 1 if v; € V,
otherwise x; = 0. It is easy to know

N
n= ZX,‘. (3)
i=1

Denote by Cx = Zv,- v Ci the cost of disintegration strat-

egy X. Then, we obtain

CX = Z Cci = ZN:X,'C,' = ZN:X,'I{. (4)
i=1 i=1

veV

Let I' be the measure function of network performance.
In this paper, we assume that if G; =(Vy, E;) is a subgraph
of Go=(Vs, E»), ie., Vi CV, and E; C E;, then I'(G))
<TI'(G,). The monotonicity assumption guarantees that the
measure function declines after node removal. In this paper,
we define the disintegration effect as the deterioration of net-
work performance ®(X) = I'(G) — ['(G) > 0. The goal of
the optimization model is to identify the optimal solution X*,
which could maximize the disintegration effect. Therefore,
the objective function is shown as follows:

max O(X = [x1,x2, ...xn])

Py
g1l =€ 5)
x;i=0orl,i=1,2,...,N.

lll. THE MEASURE FUNCTION OF NETWORK
PERFORMANCE

In this paper, we consider the natural connectivity to
evaluate the disintegration effect because the value of natural
connectivity declines strictly monotonically once the nodes
are removed. The natural connectivity can be described in
the following form.

Denote by vpe vye;...ev; a walk of length /, in which v;
€ V and ¢;=(v;_1, v;) € E. We call a walk is closed once
vo=1v;. Closed walks precisely related to the subgraphs of a
graph. For example, it stands for an edge if the length of the
closed walk is 2. The number of closed walks is a critical
indicator in network science. For example, Estrada and
Rodriguez-Velazquez have studied vertex centrality'® and
network bipartivity?* concerning the number of closed
walks. In the previous study, we have revealed the positive
correlation between the number of closed walks and the
redundancy of alternative paths. Thus, it is clear that the
number of closed walks can be regarded as a measure func-
tion of disintegration effect.”>?’ Concerning that shorter
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FIG. 1. The visualization of three typical disintegration strategies. The size
of each node is proportional to its degree; the solid red circles indicate the
removed nodes in Hub Strategy (a), the solid green circles indicate the
removed nodes in Leaf Strategy (b), and the solid yellow circles indicate the
removed nodes in Average Degree Strategy (c).

closed walks play a more important role on the redundancy
than longer closed walks, we define a weighted sum of num-
bers of closed walks § = "% n;/l!, in which we call n; the
number of closed walks of length />0, and it is easy to
know that no=N. This scaling guarantees that the weighted
amount does not deviate; besides, it also means that the
weighted amount of numbers of closed walks S could be
acquired from the power of the adjacency matrix

N
N
n = Zi:l M= trace(A) = Z; yis (6)

in which 4; is the ith largest eigenvalue of the adjacency
matrix A(G). Then, we obtain

D(X)

DX)
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Note that the weighted amount of numbers of closed
walks S would be a large number for the large value of N;
the natural connectivity is then described as an average
eigenvalue of the graph in the following form:

S 1 &
o _ /l,’
A=1In (N) =1In N ;:1 et . ®)

In Ref. 15. Chen et al., it has shown that the natural connec-
tivity declines strictly monotonically once the nodes are
removed. Therefore, lower values correspond to more
destructive attack strategies.

IV. THREE TYPICAL DISINTEGRATION STRATEGIES
IN MODEL NETWORK

A. Three typical disintegration strategies

The optimization model is zero-one integer program-
ming problem. From the previous study, we can apply pre-
cise mathematical programming approaches to solve it,
including the branch and bound algorithm.”® Nevertheless,
an objective function with an explicit formulation is needed
when we utilize precise mathematical programming
approaches. In this work, we utilize ®(X) = I'(G) — ['(G)

(b)

FIG. 2. The disintegration effect of three typical strategies, i.e., Hub Strategy (green-blue color bar), Leaf Strategy (yellow-pink color bar), and Average
Degree Strategy (dark gray color bar) in random scale-free networks with degree distribution p(k) = (y — 1)m’~ k™7, where (a) N = 1000, y =2.0; m =3, (b)
N=1000, y=2.5; m=3, (c) N=1000, y=3.0; m=3, and (d) N=1000, y =3.5, and m =3.



061101-4 Deng et al.
as the objective function of the optimization model, in which
I' is the value of natural connectivity. Although we can com-
pute I" when the disintegration strategy X is given, there is
no explicit formulation for I" as a function of the disintegra-
tion strategy X. Therefore, the precise mathematical pro-
gramming approaches are not appropriate for the problem.
Thus, we contemplate by utilizing three typical disintegra-
tion strategies for the optimization problem to investigate the
nodes selectivity of the optimal disintegration strategies.
Before analyzing the disintegration effect among these
strategies, we first present the visualization of three typical
disintegration strategies in Fig. 1. In the following part, we
select the degree to be the node property r;.

6)) Hub Strategy (HS): Nodes are eliminated by the
declining order of the degree k;, which indicates that
the hub nodes will be removed preferentially.

(i)  Leaf Strategy (LS): Nodes are eliminated by the
upward order of the degree k;, which indicates that the
“leaf” nodes will be removed preferentially.
Average Degree Strategy (AS): Nodes near average
degree will be eliminated preferentially. Denote the
average degree by (k). Let d = (ki,ka, k3, ...ky) be
the degree sequence. Denote by 0; = |k; — (k)| the
deviation value of the degree of node v; from the aver-
age degree. Therefore, nodes near average degree will
be removed preferentially means that nodes are
removed by the upward sequence of ;.
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B. Experiments in synthetic networks

In this part, we will display three typical disintegration
strategies in scale-free networks, Erdos-Rényi (ER) random
networks, and Newman-Watts (NW) small-world networks.
(i) Scale-free network: The most remarkable feature in a
scale-free network is the relative commonness of nodes with
a degree that significantly exceeds the average. We generate
random scale-free networks with degree distribution p(k)
= (y — 1)m’~'k~7 using the configuration model,?**° where
7 is the power-law exponent and m is the smallest degree. (ii)
ER random network: Not all real-world networks are scale-
free. Therefore, we also perform the method for the Erdos-
Rényi random network (ER network).’’ Erdos and Rényi
presented a simple model of the random network. Take some
number N of nodes and connect each pair with probability
Deonneciion- Erdos and Rényi called this network model as the
Gy (iii)) NW small-world network: First, start with a
nearest-neighbor coupled network with N nodes placed in a
ring, in which every node v; is connected to its neighbors,
i=1,2,...,k/2, with K being even. Then, add with proba-
bility Pronnecrion nw an edge between a pair of nodes.>?
Moreover, we use the natural connectivity as the measure
function of network performance I'.

To display the influence of the heterogeneity cost and
the cost constraint among three typical disintegration strate-
gies in the scale-free network, we show in Fig. 2 the effect of
disintegration strategy ®(X) as functions of the cost-sensitive

(b)

D)

D)

FIG. 3. The disintegration effect of three typical strategies, i.e., Hub Strategy (green-blue color bar), Leaf Strategy (yellow-pink color bar), and Average
Degree Strategy (dark gray color bar) in Erdos-Rényi networks. (a) N=1000, popneciion="0.008; (b) N=1000, pcommeciion=0.016; (c) N=1000,

Peonnection=0.024; (d) N = 1000, popneciion = 0.032.
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parameter p and the cost-constraint parameter o with differ-
ent values of y. In Fig. 2, the higher value of the ®(X), the
more destructive the disintegration strategy is. From Figs.
2(a)-2(d), the most interesting observation is that AS can
maximize the disintegration effect within an area.
Significantly, HS can achieve the disintegration effect better
than the other two typical disintegration strategies in the
most cases. In the rest cases, the dominance of HS fades pro-
gressively, while the disintegration cost changes from homo-
geneity to heterogeneity. As shown in Fig. 3, the situation is
similar in ER network. HS is still the best choice when the
disintegration costs are not sensitive, and the disintegration
effect of AS surpasses HS when disintegration cost becomes
heterogeneous. Moreover, we show in Fig. 4 the disintegra-
tion effect in NW small-world networks. From Figs. 4(a) and
4(b), it is clear that AS can achieve optimal disintegration
effect within large areas when the cost constraint is loose. As
we know, the NW model will be the original nearest-
neighbor coupled network with p.ounecrion nw=0, and it
becomes a globally coupled network if p.onnection nw = 1.3
Although the disintegration effect of AS decreases when the
network changes from a nearest-neighbor coupled network
to random network, it still remains the maximum disintegra-
tion effect in a small area in Fig. 4(d).

Moreover, we show the vertical projection of the disin-
tegration effect in Figs. 5-7. We observe that there is a
watershed between the disintegration effect of HS and AS,
especially in Figs. 5 and 7. As shown in Figs. 5, 6, and 7(d),

(@)
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if the disintegration cost ¢; is not particularly sensitive, HS is
the most destructive strategy. For the situation of strong het-
erogeneity of disintegration cost (p > 1.4), AS has performed
better than HS gradually. The situation is slightly different in
NW small-world networks in Figs. 7(a)-7(c). AS takes over
the optimal disintegration strategy when the cost constraint
is loose enough, and no matter the disintegration cost is sen-
sitive or not, e.g., « =0.8, and o =0.9.

In general, attackers want to allocate resources to hub
targets to maximize the total expected disintegration effect,
whereas the defenders want to hide the hub nodes as much as
possible to protect a network. Therefore, hub nodes are
always hard to be destroyed. On the other hand, although
leaf nodes are often easy to be accessed, LS shows the worst
performance from the previous results. Thus, the AS seems
to be the optimal strategy among them. Let us imagine that
average degree nodes play a role like a fence between hub
nodes and leaf nodes; therefore, we call the disintegration
effect of AS as the “fence effect” in this paper. To investi-
gate the details about the “fence effect,” we show in Fig.
8 the details about the disintegration effect ®(X) of AS as a
function of the cost-sensitive parameter p in three model net-
works. As shown in Fig. 8(a), it is clear that the “fence
effect” is more destructive in the scale-free network when
the disintegration cost is more heterogeneous and the cost
constraint is looser. Especially, if the disintegration cost c; is
superlinearly related to the degree d; (p > 1), the “fence
effect” increases dramatically no matter how much

(b)

D(X)

DX)

FIG. 4. The disintegration effect of three typical strategies, i.e., Hub Strategy (green-blue color bar), Leaf Strategy (yellow-pink color bar), and Average
Degree Strategy (dark gray color bar) in NW small-world networks. (a) N = 1000, p.onnection nw =0.001; (b) N =1000, peonneciion nw = 0.01; (¢) N =1000,

Pconnection NW = 01, (d) N= 1000, Pconnection NW = 0.5.
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(@) (b)

FIG. 5. The vertical projection of Fig. 2 is shown for auxiliary observation, i.e., Hub Strategy (green-blue color bar), Leaf Strategy (yellow-pink color bar),
and Average Degree Strategy (dark gray color bar). (a) N = 1000, y=2.0, and m =3; (b) N= 1000, y=2.5, and m=3; (c) N = 1000, y=3.0, and m =3; (d)
N=1000, y=3.5,and m=3.

FIG. 6. The vertical projection of Fig. 3 is shown for auxiliary observation, i.e., Hub Strategy (green-blue color bar), Leaf Strategy (yellow-pink color bar),
and Average Degree Strategy (dark gray color bar). (a) N = 1000, p.onnecrion = 0.008; (b) N = 1000, peopneciion = 0.016; (¢) N = 1000, popneciion = 0.024; and (d)
N =1000, peopnection=0.032.
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FIG. 7. The vertical projection of Fig. 4 is shown for auxiliary observation, i.e., Hub Strategy (green-blue color bar), Leaf Strategy (yellow-pink color bar),
and Average Degree Strategy (dark gray color bar). (a) N = 1000, p.onmecion nw = 0.001; (b) N = 1000, p onnection nw = 0.01; (¢) N = 1000, p onnection nw=0.1;

and (d) N= 1000: Pconnection NW = 0.5.

disintegration cost constraint is, which indicates that average
degree nodes show better disintegration effect in the case of
heterogeneous cost (p>1). From Fig. 8(b), the “fence
effect” constantly remains when p <1, and it increases
slowly when p > 1 in the ER network. As shown in Fig. 8(c),
the disintegration effects of AS in NW small-world networks
are similar to ER random networks. The “fence effect” tends
to increase slowly with increasing value of the cost-sensitive
parameter p.

To investigate the “fence effect” in depth, we show the
number of removed nodes n with various parameters settings
of p and « in Fig. 9. We observe an uptrend of n towards the
large values of p and o in Figs. 9(b), 9(d), and 9(f). It sug-
gests that more nodes near average degree will be removed
once the disintegration cost is more heterogeneous and the
cost constraint is looser, which is in good agreement with the
previous result that the “fence effect” shows a clear upward
trend in three model networks. Conversely, the number of
removed nodes of HS shows a downward trend dramatically
in Figs. 9(a), 9(c), and 9(e), which is corresponding to the
declining trend of disintegration effect of HS. From Figs.
9(c)-9(f), although the trends of the number of removed
nodes are more gradual in ER networks and NW small-world
networks, the uptrend of AS and downtrend of HS are also
similar to the situations in scale-free networks, which is cor-
responding to the trend of disintegration effect in ER

networks and NW small-world networks, respectively. The
results are similar in the rest synthetic networks that we dis-
cussed above.

C. The accuracy of node attribution in average degree
strategy

To investigate whether hubs are still removed when we
employ AS, we quantify this problem by examining the devi-
ation of the degree of removed nodes from the average
degree. Denote by k; the degree of node v;. Let (k) be the net-
work’s original average degree. We denote the removed
nodes set by V C V and the number of removed nodes by
n = |V|. Denote by X = [x|,x2, ...xy] the disintegration strat-
egy, in which x;=1 if v; € V, otherwise x;=0. Denote by
®x the measure function to quantify the deviation of the
degree of removed nodes from the average degree. The form
of Oy is as follows:

N N
Z 0; ingi ZM’V@‘ — (k)|
i-1 i-1

vieV

Ox = €)

n on n

We calculated the values of @y for twelve model net-
works and showed the results of ®y in Tables I-III, respec-
tively. For example, note that AS is the optimal disintegration
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FIG. 8. The disintegration effect ®(X) of AS as a function of the cost-sensitive parameter in (a) Scale-free network, (b) ER network, and (c) NW small-world
network. The original network and data are the same as those we used in Figs. 2—4, respectively.

strategy when p=1.5 and o =0.1 from Figs. 2(b) and 5(b),
while the corresponding value of @y is only 0.97 in Table 1.
As shown in Table I, we can see that most values of @y are
within the interval [0,3]. The values of @ are relatively quite
low because there are more than 100 nodes whose degrees
are larger than 14 and the average degree is around 8.
Especially, when the number of removed nodes is greater
than almost 800, the value of ®y is just more than 3. The
nice results owe to the technique that we generate the AS,
where the nodes are deleted by the upward sequence of 0,.
For ER network and NW small-world network, the values of
Oy are even lower, in which most of the results are below 1.
The situations are similar to the rest of synthetic networks
that we discussed in Sec. IV B. Therefore, it is quite clear that

AS will not remove hubs unless the cost constraint is loose
enough which leads to the fact that most nodes would be
removed including hubs, and the higher disintegration effect
of AS is also not related to the reason that many hubs are still
removed when we employ AS.

V. EXPERIMENTS IN REAL-WORLD NETWORK

The study of network disintegration with heterogeneous
cost is crucial for many real-world networks. To show the
applicability of the presented framework, we implement
experiments in three real-world networks: (i) the Food web
of south Florida during the wet season,>* (ii) the Political
blogosphere (PB) network,>> and (iii) the network of the US
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FIG. 9. The number of removed nodes of (a) HS in the scale-free network, (b) AS in the scale-free network, (c) HS in the ER network, (d) AS in the ER net-
work, (e) HS in the NW small-world network, and () AS in the NW small-world network, The original network and data are the same as those we used in Figs.
2(b), 3(a), and 4(c), respectively.

TABLE 1. The value of Oy in the scale-free network, and the original net-
work is the same as the one we used in Fig. 2(b), where N =1000, y=2.5,

and m = 3.

TABLE II. The value of @y in the ER network, and the original network is
the same as the one we used in Fig. 3(a), where N=1000 and
Pconnection= 0.008.

o p=0 p=025 p=05 p=0.75 p=1 p=1.25 p=15 1.75 2

o p=0 p=0.25 p=05 p=0.75 p=1 p=1.25 p=15 175 2

0.1 0.64
0.3 1.67
0.5 2.45
0.7 298
0.9 3.47

0.60 0.58 059 065 0.76 097 1.53 2.94
1.60 1.58 1.67 1.89 228 336 3.90 447
2.44 2.50 267 294 358 4.15 470 5.06
3.03 3.19 348 381 437 4.89 5.16 5.29
3.64 3.96 444 497 529 546 5.46 546

0.1 0.02 0.02 0.02 0.02 002 0.02 0.02 0.02 0.02
03 043 042 0.41 041 041 042 043 0.44 045
05 072 071 0.71 072 073 0.75 0.78 0.80 0.83
0.7 1.09 1.09 1.09 1.11 1.14  1.16 1.19 121 1.24
09 1.56 1.55 1.56 1.60 1.66 1.69 .71 173 1.79
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TABLE III. The value of @y in the NW small-world network, and the origi-
nal network is the same as the one we used in Fig. 4(c), where N = 1000 and

Pconnection NW = 0.1.
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TABLE IV. Basic statistics of real networks, N and W, are the numbers of
nodes and links. (k) is the average degree; C is the clustering coefficient; r is
the assortativity; and (/) is the average shortest distance.

o p=0 p=025 p=05 p=0.75 p=1 p=125 p=15 175 2 Networks N w (k) C r (1)
0.1 0.00 0.00 0.00 0.00  0.00 0.00 0.00 0.00 0.00 Food web 128 2106 32.906 0.312 —0.111 1.73
0.3 0.00 0.00 0.00 0.00  0.00 0.00 0.00 0.00 0.00 PB 1222 16714 27.36 0.36 —-0.221 3.65
0.5 0.07 0.07 0.07 0.07  0.07 0.07 0.08 0.08 0.08 Usairports 1574 28236 35.8 0.384 —0.113 3.14
0.7 034 034 0.34 034 034 034 0.34 034 0.35

09 049 049 0.50 0.50 050 0.50 0.50 0.51 0.51

(a)

(b)

()

B

35883

3 & 3 & 8 5 ]
Q
5883 888835

FIG. 10. The disintegration effect of three typical strategies in three real-world networks, i.e., (a) Food web, (b) Political blogosphere network and (c) the net-
work of the US air transportation system. The lighter color indicates the higher value of ®(X): Hub Strategy (green-blue color bar), Leaf Strategy (yellow-pink

color bar), and Average Strategy (dark gray color bar).

air transportation system (http://toreopsahl.com/datasets/
usairports). Basic statistics of three real-world networks are
displayed in Table IV. As shown in Table IV, all of the net-
works are well connected, with high clustering coefficients
and short average distances.

We simulate the disintegration effect of three disintegra-
tion strategies on these networks, and results are shown in
Fig. 10. All three networks exhibit a similar pattern with the
synthetic networks: HS can achieve the disintegration effect
better than the other two typical disintegration strategies in
the most cases. In the rest cases, the dominance of HS fades
progressively; and AS becomes the best choice when the dis-
integration cost is from homogeneous into heterogeneous,
and LS remains the worst strategy. It is critical to observe
that all the three real-world networks have a “fence effect”
area where AS achieves maximum disintegration effect
entirely among three strategies. In general, critical infrastruc-
ture implies more disintegration cost, which suggests that the
disintegration cost is heterogeneous. Thus, the AS could
work better within the problem of network disintegration
than HS and LS according to the results above. Taking
another perspective, AS may also enlighten efficient methods
to protect crucial infrastructure through strengthening the
nodes which are chosen by the average degree strategy.

V1. CONCLUSION AND DISCUSSION

The study of the network disintegration is primarily to
remove a group of nodes to achieve the maximum disintegra-
tion effect. Seeking an optimal solution among massive alterna-
tive strategies with the heterogeneous cost and cost constraint is
a significant and challenging problem. Most related studies
of network disintegration problem assumed that the disintegra-
tion cost is equal while neglecting a critical reality that the

disintegration cost of each node (edge) might be heterogeneous.
In this work, we concentrate on the network disintegration
problem with heterogeneous disintegration cost, where the dis-
integration cost to eliminate each node might be non-identical.
We first put forward a disintegration cost model and an
optimization model for disintegration strategy. Then, we
analyze three typical strategies to explore their disintegration
effects on synthetic networks and real-world networks.
Numerical experiments indicate that the disintegration effect
of hub strategy drops gradually when the disintegration cost
changes from homogeneity to heterogeneity. For the situa-
tion of strong heterogeneity of disintegration cost, average
degree strategy achieves the maximum disintegration effect
gradually. Also, taking another perspective, average degree
strategy may also enlighten efficient methods to protect cru-
cial infrastructure through strengthening the nodes which are
chosen by the average degree strategy. In the future study,
we would try more suitable functions to define the disinte-
gration effect first, such as weighted linear function and log-
arithmic function. Then, we would introduce more
reasonable disintegration strategies to the problem of net-
work disintegration, which deserves further investigation.
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