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Network disintegration comprises the problem of identifying the critical nodes or edges whose
removal will lead to a network collapse. The solution of this problem is significant for strategies
for dismantling terrorist organizations and for immunization in disease spreading. Network disinte-
gration has received considerable attention in isolated networks. Here, we consider the generalization
of optimal disintegration strategy problems to multiplex networks and propose a disintegration strat-
egy based on tabu search. Experiments show that the disintegration effect of our strategy is clearly
superior to those of typical disintegration strategies. Moreover, our approach sheds light on the
properties of the nodes within the optimal disintegration strategies. Published by AIP Publishing.
https://doi.org/10.1063/1.5078449

Many systems can be represented by networks of nodes
connected by edges. In particular, many essential nat-
ural, technological, and social systems consist of fully
or partially interdependent subsystems, allowing them
to be represented by such interdependent or multiplex
networks. In addition to enhancing the reliability of some
crucial networks, it is also desirable to dismantle networks
that are harmful to us, such as disease spreading net-
works and terrorist organizations. The essential purpose
of this work is to seek an optimal disintegration strategy
in multiplex networks.

I. INTRODUCTION

Networks are ubiquitous.1,2 These may consist of tangible
objects in the Euclidean space, such as certain infrastruc-
ture networks,3 or entities defined in an abstract space, such
as in social networks.4 The majority of these networks are
beneficial to people, and many studies concentrate on how
to enhance their robustness.5–7 However, in other situations,
we would like to disintegrate networks that are harmful.
Examples include epidemic spreading networks,8,9 terror-
ist networks,10,11 and rumor spreading networks.12,13 Hence,
research regarding disintegration strategies for networks has
received increasing attention.14,15

In previous research, disintegration strategies for com-
plex networks have focused on certain properties of the nodes.
Most traditional strategies are degree-based strategies, in
which nodes are sequentially removed in decreasing order of
their degrees.16 On the other hand, some global metrics have
also been employed to identify the vital nodes for network dis-
integration, including coreness,17 subgraph centrality,18 and
others.19 Recently, some algorithms have been presented in
various contexts, such as network dismantling,20,21 targets,22

immunization,23 and percolation.24,25 The solutions for these
problems are equivalent, with the aim of identifying the
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minimal set of removals required to destroy a giant connected
component in a single network.26 These algorithms can also
be employed to obtain efficient disintegration strategies under
limited conditions.

There have been some previous studies on disintegration
strategies in single-layer networks,14,27 which do not inter-
act with other networks. However, real-world networks rarely
exist independently, and most are coupled with or interact
with other networks, such as the same actors appearing in dif-
ferent social networks,28 multi-modal transportation systems
sharing common geographical locations,29 and diverse types
of connections among proteins.30,31 A better description of
such systems is in terms of multiplex networks, where each
layer typically contains the same type of nodes but different
links among them.32,33 Recent research has demonstrated that
ignoring the co-existence of various interactions in the study
of a multiplex network may have dramatic consequences in
the ability and properties of the system.34,35 Therefore, study-
ing the problem of disintegration in multiplex networks is of
considerable significance.

There have also been many studies in recent years con-
cerning attacks or robustness in multiplex networks.36,37 In
particular, Osat et al.38 considered various existing algorithms
for optimal percolation in multiplex networks, finding that
ignoring the co-existence of interactions may lead to over-
estimating the robustness of a system. However, there have
been few studies concentrating on the problem of disintegra-
tion strategies in multiplex networks, especially with different
sizes of node sets removed.

In this paper, we focus on an optimal disintegration strat-
egy in multiplex networks. We construct a general model for
finding the optimal disintegration strategy. Then, we solve
this using a tabu search (TS) algorithm, which is a flexible
and efficient global search algorithm, by simulating the pro-
cess of human memory.39 Moreover, we test the algorithm
on both artificial networks and real datasets, and introduce
some existing algorithms for comparison. The performance
of the optimal strategy and the properties of nodes in different
optimal strategies are revealed.
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The remainder of this paper is organized as follows.
The optimization model for multiplex network disintegration
problems is presented in Sec. II. In Sec. III, we introduce a
solution based on tabu search. Experiments on three types
of model network and real-world networks are presented in
Sec. IV. Finally, we present conclusion and discussions in
Sec. V.

II. OPTIMIZATION MODEL FOR DISINTEGRATION
STRATEGY IN A MULTIPLEX NETWORK

A multiplex network can be thought of as a set of
nodes connected by various types of edges, and we depict
an example of a two-layer network in Fig. 1. However, a
multiplex network is not simply a stack of many network
layers but incorporates functional coupling between layers.40

For instance, the different layers in a multiplex network may
be coupled either in a dependent manner, as in the critical
infrastructure,41 or in a connective manner, as in a transporta-
tion system.30 Depending on the type of multiplexity, the same
multiplex structures can behave quite differently. As shown in
Fig. 1(a), we employ two disintegration strategies to attack
node 4 or node 6. From the perspective of a single layer,
each of these has four edges of different types, and they do
not affect the connectivity of other nodes. However, from the
perspective of a multi-layer network, their performances are
quite different in two different coupling modes [the dependent
manner in (c) and (e) and connective manner in (d) and (f)].

A complex network (single-layer network) can be formed
as a tuple G = (V , E), where V(G) = V is the set of nodes and
E(G) = E ⊆ V × V is the set of edges. By A(G) = (aij)N×N ,
denote the adjacency matrix of G, in which aij = aji = 1 if
vi and vj are connected, and aij = 0 otherwise. We consider
a multiplex network with M layers and an adjacency matrix
A[α] in each layer α = 1, 2, . . . , M . Without loss of generality,
we assume that a multiplex network G composed of N nodes
is given. Every node i ∈ G appears in both layers so that the
failure of a node in one layer implies the simultaneous fail-
ure of its copy in the other layer. In addition, let k[α]

i be the
degree of node vi in layer α. The value of k[α]

i is the number
of adjacent edges of node vi in layer α.

In this study, the disintegration approach focuses on node
removal, and we assume that the attached edges are removed
if one node is removed. Denote by V̂ ⊆ V the set of nodes
that are removed, and denote by Ĝ = (V − V̂ , Ê) the network
after these nodes are removed. By n = ∣∣V̂

∣∣, denote the dis-
integration strength parameter. We define the disintegration
strategy as X̂ = [x1, x2, . . . , xn], where xi = 0 if vi ∈ V̂ and
xi = 1 otherwise. It is easy to obtain that

n = N −
N∑

i=1

xi. (1)

Let � be the measure function for the network performance.
This could be given by the connectivity or robustness indices
of the multiplex network. It is worth noting that the mea-
sure function must be monotonous, i.e., V1 ⊆ V2 and E1 ⊆ E2,
then �(G1) ≤ �(G2), where G1 = (V1, E1) is a subgraph of
G2 = (V2, E2). The monotonicity guarantees that the mea-
sure function declines after node removal. The goal of the

FIG. 1. Schematic illustration of the disintegration strategy in multiplex net-
works. A multiplex network with two different types of edges is shown in (a)
and (b). In (a), the dashed-dotted line represents the edges in layer 1, and the
dotted line represents those in layer 2. The edges that appear twice are shown
as solid lines. We separate the two layers in (b). In (c) and (d), we show the
disintegration effect of attack 1 in two different coupling modes (dependent
and connective, respectively). In the same manner, the effect of attack 2 is
shown in (e) and (f). In each scheme, we use orange to mark the nodes that
are attacked or failed and black to denote the nodes belonging to the GMCC.
From the perspective of multiplex networks, the effects of different attacks
may be entirely different, owing to the varying properties of edges between
layers or within layers.

optimization model is to identify the optimal solution X̂ ∗ that
can maximize the disintegration effect. Therefore, the opti-
mization model for the disintegration strategy in a multiplex
network can be described as follows:

max �(X = [x1, x2, . . . , xn])

s.t.

⎧
⎪⎨

⎪⎩
n = N −

N∑

i=1

xi,

xi = 0 or 1, i = 1, 2, . . . , N .

(2)

In single-layer networks, connected components are used to
measure how well a network is connected. For the cou-
pled networks described above, in this study, we generalize
the concept of connected components to mutually connected
clusters (MCC), which are defined as follows:41

Mutually connected cluster (MCC): A set of nodes SA ⊆
A with corresponding set SB ⊆ B is called a mutually con-
nected set if any two nodes in SA are connected by a path of A-
edges in SA and any two nodes in SB are connected by a path of
B-edges in SB. Furthermore, a mutually connected set is called
a mutually connected cluster (MCC) if it is impossible to add
another node to the set to form a mutually connected set.
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FIG. 2. The optimal disintegration strategy in three synthetic networks. We consider the disintegration effect � versus the fraction q of nodes removed in
a coupled Erd’os–Rényi (ER) network (a), coupled scale-free (SF) network (b), and ER-SF network (c) and compare the results with various disintegration
strategies. The computation time of the tabu search algorithm versus the network size N is shown in (d), where q = 0.2. The figures show that the disintegration
effects of the proposed disintegration strategies are considerably better than those of the others, and the time complexity is approximately O(N).

In particular, we focus our attention on the largest among
these clusters, usually referred to as the giant mutually con-
nected cluster (GMCC). In this study, we use the size of the
GMCC, which is given as a fraction μ∞ of the size of the
full network, as the measure function �. We assume that each
layer of the multiplex network is connected, and so the size of
the full network is 1, i.e., �(X ) = 1 − μ∞.

III. SOLUTION BASED ON TABU SEARCH

Clearly, the objective function � yields no explicit form,
and so we cannot solve the optimization model in Eq. (2)
using traditional integer programing methods. It can instead
be viewed as a combinatorial optimization problem. For a net-
work with N nodes, there are Cn

N ways to pick n nodes for
removal, which increases sharply with N and n. Therefore,
it is almost impossible to look through all possible solutions
if the network size is large. Hence, we consider solving this
problem using the tabu search (TS) algorithm. The tabu search
algorithm has been employed for the optimal disintegration

strategies in single-layer networks.14,42 In this study, the mul-
tiplex network G is coded with M adjacency matrixes. The
state of the network after the node set removed and the method
of calculating the GMCC are determined by the properties of
the edges between or within the layers.

The four primary parts of the algorithm are described as
follows:

Move mechanism: The move mechanism represents the
process of pointing the current solution state toward another
one. The basic principle of the move mechanism is to obtain
an initial potential solution and check its immediate neigh-
bors to iteratively choose the best one for the next step. In
the tabu search algorithm, we consider the operation swap
as a move operation. Each neighbor of the current solution
is obtained by swapping the states (0 or 1) of two nodes
randomly, which is denoted as a swap S. Because the num-
ber of possible neighbors is large, we randomly choose ncan

neighbors as candidate solutions.
Tabu list: The tabu list, denoted as Tlist, records the pre-

viously encountered “best” swap. The key observation here
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is that when the swap operation occurs on nodes that are in
the tabu list, we need to abandon this swap to prevent the
search from tracing back. The tabu list is initially empty, and
the “best” swap at each step is recorded in the tabu list once
conducted. Each time we swap the two corresponding nodes
so that the tabu nodes will not be allowed to change their
state within a certain number of iterations. The length of the
tabu list L determines the number of iterations for which the
best swaps cannot be chosen. A swap in tabu list for more
than L iterations can then be released. The length of the tabu
list L will affect the time complexity and performance of the
algorithm. The larger the L is, the more accurate the results
will be, but the corresponding storage and computational com-
plexity will also increase. The most appropriate L can be
confirmed by testing in advance according to the performance
of the computer. Notably, the tabu list should be emptied if
X̂opt is updated to a better one, because a better X̂opt indicates
that the algorithm has not fallen into a sub-optimal solution,
and the previous good swaps can be accepted.

Aspiration criterion: An aspiration criterion is set to
avoid the loss of good solutions and encourage global opti-
mization. An aspiration criterion is a condition that allows a
swap to be released from the tabu list when its correspond-
ing solution yields �(X̂can) that is better than the current
�(X̂opt).

Termination criterion: The termination criterion, denoted
by nmax, is set to stop a round of process. The current num-
ber of iterations is denoted by niter before X̂opt is updated. The
value of niter will be set to 0 once X̂opt is updated. When the
current number of iterations niter reaches the previously set
nmax without an improved solution, the process ends. This pro-
cess can be viewed as a round of searching, where the number
of iterations is uncertain. We denote the maximum total num-
ber of iterations by Tmax and the total number of iterations in
all past rounds by Titer. When a round of iterations is com-
pleted before Titer exceeds Tmax, the program will start a new
round of searching from an initial solution.

Each step of the algorithm is described as follows (the
source code can be obtained from the authors):

Procedure 1: Initialization of the algorithm. Set the max-
imum iteration number nmax, the maximum total iteration
number Tmax, the number of candidate solutions ncan, and the
length of the tabu list L. Initialize Titer = 0.

Procedure 2: Generate the initial solution X̂0 and ini-
tialize the tabu list. Initialize niter = 0 and Tlist = NULL.
Generate a vector X̂0 = (x1, x2, . . . , xn). Set xi = 0 when node
vi is removed and xi = 1 otherwise. X̂0 can either be given
randomly or by another strategy with a better performance.
Determine whether Titer > 0. If satisfied, then continue to the
next step. If not satisfied, then let the current best solution
X̂opt = X̂0. Calculate �(X̂opt).

Procedure 3: Titer = Titer + 1. Determine whether Titer >

Tmax. If satisfied, output the result. Otherwise, continue to the
next step.

Procedure 4: Generate candidate solution. Generate ncan

candidate solutions X̂i ∈ N(Xcur) by the respective swaps Si.
Determine X̂k , where X̂k = max �(X̂i).

Procedure 5: Determine whether SK /∈ Tlist or �(X̂k) >

�(X̂opt) (aspiration criterion). If satisfied, continue to the next

step. If not satisfied, find another X̂k s.t. X̂k = max �(X̂opt)

and Sk /∈ Tlist.
Procedure 6: Update the tabu list. Remove the element

added into Tlist L iterations ago, and then add the swap Sk to
Tlist.

Procedure 7: Determine whether �(X̂cur) > �(X̂opt). If
satisfied, then �(X̂opt) = �(X̂cur), Tlist = NULL, and niter = 0.
If not satisfied, then niter = niter + 1.

Procedure 8: Determine whether niter < nmax. If satis-
fied, return to step 3. If not satisfied, return to step 2.

IV. EXPERIMENTAL ANALYSIS

A. Experiments in synthetic networks

In this section, we test the performance of the algorithm
on multiplex networks consisting of a pair of interdependent
networks, as discussed by Buldyrev et al. in 2010.41 In the
model, we consider two networks A and B with degree distri-
butions PA(k) and PB(k) and equal sizes |A| = |B| = N . We
say that a node iA in A depends on a node iB in B if the fail-
ure of iB causes the failure of iA. In this model, we assume
that each node iA of A depends only on one node iB of B and
vice versa. Hence, the removal of nodes may cause an iterative
process of a cascade of failures.

The parameters for solving the optimization model are set
as L = 10, Tmax = 1000, nmax = 100, and ncan = 100. These
experiments are conducted on a PC (Intel Core i7-7700U CPU
at 3.6 GHz, 16 GB RAM) with MATLAB version R2017b.
Here, we focus on three typical networks: a coupled ER net-
work, a coupled SF network, and a ER-SF network, which are
described as follows:

Coupled ER network: A multiplex network composed
of two layers generated independently according to the
Erd’os–Rényi model,43 with N nodes and an average degree
of 〈k〉. The Erd’os–Rényi model generates a network by
connecting nodes randomly, where each edge is included in
the network with a probability p, independently from every
other edge. The parameter p determines the average degree
〈k〉 of the network.

Coupled SF network: A multiplex network composed
of two layers generated independently according to a scale-
free model with N nodes and an average degree 〈k〉. The
scale-free model44,45 (i.e., Barabasi-Albert preferential attach-
ment network) is created from a few isolated nodes and
expanded by adding new nodes and links. The new nodes have
a preference to attach to heavily linked nodes (hubs).

ER-SF networks: A multiplex network composed of
two layers generated independently, according to the above
Erd’os–Rényi and scale–free models, respectively.

To demonstrate the efficiency and effectiveness of our
algorithm, we compare it with three typical score-based
disintegration strategies: high degree (HD), high degree
adaptive (HDA), and explosive immunization (EI).

In a multiplex network, a degree-based attack is the
easiest method of dismantling a network. We extend the HD
strategy to multiplex networks, and the score of a node is
defined as the product of its degrees across all layers, which
has been proved to be the best combination.38 In the HD
algorithm, if we recalculate the degrees of the nodes after node
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FIG. 3. Optimal disintegration strategy in multiplex transportation networks, which consist of Delta-American Airlines (a), American Airlines-United (b), and
Delta-United (c). We show the relative size of the disintegration effect � versus the number of deleted nodes with the high degree strategy (dotted lines), high
degree adaptive strategy (dashed-dotted lines), and optimal disintegration strategy based on tabu search (solid lines) in the left side of each graph. The filled
area illustrates the improvement of the network disintegration effect in the optimal disintegration relative to the high degree strategy. The right side of each
graph shows a visualization of the optimal strategy on the multiplex network of US domestic flights. We depict the intersection graphs for the networks, where
nodes belonging to the largest connected component are represented with circles and other nodes are represented with squares. Moreover, the size of each node
is proportional to the probability of finding that nodes in different optimal disintegration strategies with the same disintegration effect. The nodes with higher
probability are shown in red, and other nodes are shown in black. The result shows that as the number of nodes removed increases, the effect of the optimal
collapse strategy steadily increases, and most of the high-frequency nodes appear in the largest connected cluster of the intersection graph.

deletion at each step, this is referred to as an HDA algorithm.
As in the HD case, we define the method using the product of
the degree.

The EI algorithm is based on a method referred to as
explosive percolation in a single-layer network, which was
introduced by Achlioptas et al.46 Clusella et al.23 proposed a
modified version to solve the optimal immunization problem

related to explosive percolation. Osat et al.38 generalized this
method to multiplex networks. In this experiment, we refer
to this method as the explosive immunization (EI) algorithm
and utilize it to create disintegration strategies (see the above
reference for details).

The results on the different coupled networks are depicted
in Figs. 2(a)–2(c), respectively. It is worth mentioning that in
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the tabu search algorithm, we employ the solution given by the
HD method as the initial solution to improve the search effi-
ciency. Both layers are generated according to the BA model
or the ER model, with N = 1000 nodes and an average degree
of approximately 〈k〉 = 4 (i.e., p = 0.008 in the ER model,
and we add four nodes at each step in the BA model). We
determine the mean value of � over 20 realizations of the
tabu algorithm and 100 realizations of the other strategies.

We find that given the fraction q of nodes, the disintegra-
tion effect of the tabu search algorithm (called the optimal dis-
integration strategy) is considerably better than those for the
other disintegration strategies, which is especially true on the
coupled ER network. On the coupled SF network, the effects
of the degree strategies are incredibly close to the optimal
strategy. In addition, in the above results, as q increases, the
transition of the disintegration effect becomes more smooth
in our strategy than the others, and the catastrophic cascade is
less obvious.

Moreover, we illustrate the computation time of the tabu
algorithm as a function of the network size N in Fig. 2(d),
where the box plots are drawn based on over 100 independent
realizations. To ensure that the initial size of GMCC is equal
to 1, we choose the coupled SF network to calculate the time.
We find that the time complexity of the optimal disintegration
strategy based on tabu search is approximately O(N).

B. Experiments on real networks

In order to test the disintegration effect of the optimal
strategy on real systems and observe the characteristics of
nodes in optimal strategies, we consider the multiplex net-
work of US domestic flights operating in January 2014. In the
networks, airports are nodes and connections on each layer are
determined by the existence of at least one flight between two
locations.30 The basic data for the multiplex transportation
networks are shown in Table I. The value of the parameters in
the algorithm and the experimental environment are the same
as those in Sec. IV A.

The intersection between the layers: Radicchi30 decom-
posed a multiplex network into two uncoupled graphs: the
intersection between the layers and the remainders of each
layer. The former is a network consisting of overlapping edges
in different layers (i.e., the intersection graph with the adja-
cency matrix is given by the Hadamard product of first and

TABLE I. The basic data for the multiplex transportation networks. The
first column identifies the names of the different pairs of layers used to
construct coupled networks. For each of these, we report the following
columns: number of nodes N , number of nodes Ninter in the giant con-
nected component (GCC) of the intersection graph, the total number of
edges Einter in the intersection graph, the number of nodes in the GCC of
the remainder of the first or the second layer (N1 and N2), and the number
of edges present only in the first or the second layer (E1 and E2).

Layers N Ninter Einter N1 E1 N2 E2

Delta-American Airline 84 49 68 76 190 79 374
American Airline-United 73 42 68 68 161 69 202
Delta-United 82 39 56 78 348 78 226

second layers). It was demonstrated that when the intersec-
tion dominates the remainders, an interconnected network
undergoes a smooth percolation transition.

To observe the improvement of the disintegration effect
of the optimal strategy compared with the other general strate-
gies, we choose the degree strategies (HD and HDA) for
comparison. It is worth mentioning that transportation net-
works are coupled in a connective manner. Therefore, when a
node is removed, we only need to remove the adjacent edges
in each layer. Moreover, to achieve a better performance, in
HDA strategy, we calculate the degrees of nodes through the
number of adjacent edges that belong to MCCs. The results
are shown in the left part of Fig. 3. We can see the improve-
ment of the optimal strategy effect compared with the HD
strategy through the shadow area. Moreover, we choose the
optimal strategies with the greatest improvement. In the 100
independent experiments, we obtained 20, 20, and 19 differ-
ent sets of nodes, all of which have the optimal disintegration
effect. In these optimal disintegration strategies, we count the
number of occurrences of different nodes and consider those
that appear more than twice as those with less substitutabil-
ity. On the right side of Fig. 3, we visualize these nodes in
the intersection graphs of different networks. We observe that
most nodes with less substitutability are on the largest con-
nected component of the intersection between different layers.
There are a small number of nodes in other locations, and the
overall distribution is geographically uniform.

V. CONCLUSION AND DISCUSSION

Network disintegration is a key issue in complex network
fields, which can guide effective attacks on harmful networks.
Conversely, network disintegration methods can be utilized to
determine the weak parts of a network, helping us to protect
vital networks.

In this study, we generalized the optimization model for
a disintegration strategy to multiplex networks and solved
it using a tabu search to obtain the optimal disintegration
strategy. The disintegration effects of the optimal disinte-
gration strategies have been verified by comparison with
other strategies on various models and real networks. We can
approximate the best choice of the set of nodes through a
global search. Here, we only discussed some coupled inter-
dependent or interconnected networks with two layers. The
performance of the disintegration strategy on other multiplex
network models or networks with different multi-layer types
requires further study.

Moreover, the algorithm we utilized in this study is a
serial global search algorithm, which is more suitable for
dealing with medium-sized networks. When facing certain
large-scale networks or demanding faster results, we require
further optimization of the algorithm or to sacrifice part of the
optimization effect to improve the algorithm efficiency.
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