
Physica A 521 (2019) 705–714

Contents lists available at ScienceDirect

Physica A

journal homepage: www.elsevier.com/locate/physa

Stackelberg game in critical infrastructures from a network
science perspective
Yapeng Li, Shun Qiao, Ye Deng, Jun Wu ∗

College of Systems Engineering, National University of Defense Technology, Changsha, Hunan 410073, PR China

h i g h l i g h t s

• We propose a Stackelberg game model to depict the confrontations between the strategic attacker and defender in critical infrastruc-
tures.

• We define the strategies and payoffs of the game on the basis of the topology structure of the network.
• We explore the Strong Stackelberg Equilibriums of the game in different kinds of networks.
• We find that the cost sensitivity is the main factor influencing the equilibrium results.
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a b s t r a c t

Defending critical infrastructures has received enormous attentions by security agencies.
Many infrastructures function as networks such as transportation and communication
systems. It is necessary for us to protect them from a network science perspective. In many
real-world scenarios, the attacker can observe the defender’s action and then choose its
best strategy accordingly. Therefore, we propose a Stackelberg game where the defender
commits to a strategy, either a pure strategy or a mixed one, and the attacker makes its
choice after knowing the defender’s action. The strategies and payoffs in this game are
defined on the basis of the topology structure of the network. For the convenience of
analysis, only two attack and defense strategies, namely, targeted strategy and random
strategy, are considered in this paper. The simulation results reveal that in infrastructures
with a small cost-sensitive parameter, representing the degree towhich costs increasewith
the importance of a target, the defender commits to amixed strategy and the attacker’s best
response is to attack hub nodes with the largest degrees. When the cost-sensitive parame-
ter exceeds a threshold, both the defender and the attacker switch to the random strategy.
We also implement experiments with different cost-sensitive parameters and find that the
attack-cost-sensitive parameter is the key factor influencing the equilibrium strategies. Our
work is a rudimentary attempt to analyze the Stackelberg game in protecting networked
infrastructures and it is worth further study.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Security at critical infrastructures, such as communication, electrical power, rail, and fuel distribution networks, is a
key concern and a challenging task for security agencies all over the world. These critical infrastructures play a vital role in
modern society, whichmakes them to be themilitary targets in times of war. Besides, the threat of terrorism exacerbates the
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Fig. 1. Payoff matrix of a normal form game.

vulnerability of these infrastructures. For example, Colombia, India, Pakistan, Spain and Turkey have encountered terrorist
attacks on electrical power networks, rail networks, and oil pipelines.Moreover, the components of these systems are always
networked, where the connectivity as well as the topology structures of these networks have tremendous impact on their
functionalities. There are always enormous public investments in each infrastructure system, thus, even a minor disruption
caused randomly or deliberately, will inflict substantial economic losses [1]. The interrelationship among the components
within a certain system and among different systems poses an even larger challenge on protecting these infrastructures.

In the past few years, many methods have been proposed to deal with the protection of infrastructure systems, such
as Probabilistic Risk Assessment (PRA) [2] and game-theoretic approaches [3–9]. Due to the limitations of PRA that it
requires static probabilities as inputs [10], the game-theoretic methods have been accumulating significant research
interest. Nochenson and Heimann [11] propose an agent-based network security game to protect the computer networks.
This game is a simultaneous-move and repeated game, where the utilities of the players are determined by the values
of individual computers which are preassigned randomly in the simulation. Rao et al. [12] investigate the game in
infrastructures consisting of a network of systems, where the costs of players are in sum-form, product-form and composite
utility functions. Many other studies also investigate these interactive situations between the attacker and defender on
defending critical infrastructures [13–18]. However, most studies do not consider the connectivity of different components
within a system and they only evaluate the payoffs of the players by summing up the valuations of individual targets. This
evaluation is not reasonable in networked systems, because the importance of a target is not only determined by itsmonetary
value, but is also affected by its neighbors. Li et al. [19] propose an attacker–defender game, which defines the payoffs and
the strategies on the basis of the topology structure of the target network. This game is simultaneous-move and both players
have complete information about the opponent. Keeping the protection resource allocation secret is common in real-world
and is studied by many researches [20,21].

However, inmany real-world scenarios, strategies are not always selected in such a simultaneousmanner. Oftentimes, the
leader is able to commit to a strategy before the follower chooses its own strategy, which is a Stackelberg game. Stackelberg
games are commonly used to model attacker–defender scenarios in security domains [1]. In many security problems, a
motivated attacker can gather historical information about security measures by surveillance. Although the follower in a
Stackelberg game is allowed to observe the leader’s strategy beforemaking its own action, there is often an advantage for the
leader over the simultaneous-move case. This first-mover advantage in a defender–attacker sequential games is discussed
as a theorem in [22]. To illustrate the advantage of being the leader, consider the game with the payoff matrix as shown
in Fig. 1, which is adapted from [23]. The only pure-strategy Nash equilibrium for this game is that the leader chooses the
strategy awhich is a dominant strategy and thus the follower plays c , ensuring the leader a payoff of 2. However, when the
leader commits to the strategy b, the follower’s best response is d and the leader obtains a higher payoff of 3.When the leader
commits to a mixed strategy of playing a and b with equal probability, the follower’s best strategy is still d and the leader
gets a even higher payoff of 4. Conitzer and Sandholm [23] firstly investigates this kind of Stackelberg game and studies how
to compute optimal strategies to commit to in both normal-form and Bayesian form. Paruchuri et al. [24] study the Bayesian
Stackelberg games in the domain of patrolling and propose an efficient algorithm DOBSS for finding the optimal strategy for
the defender to commit to, which is at the heart of the ARMOR system that aims at protecting the Los Angeles International
Airport. There are many other algorithms for these Bayesian Stackelberg games, such as ASAP [25] and ERASER [26]. Many
applications based on these algorithms have been deployed in airports [27], ports [28], transportations [29] and many other
infrastructures [26,30–33].

In this paper, we will propose a Stackelberg game where the valuation of a target is evaluated in the whole network.
The rest of this paper is organized as follows. In Section 2, we introduce the cost model, strategies, payoffs of the game, and
introduce the Stackelberg game with two typical defense and attack strategies. The solution method is shown in Section 3.
The experimental results in scale-free networks are shown in Section 4.We also implement simulations in various networks
in Section 5. Finally, we make a conclusion and introduce future work in Section 6.

2. Stackelberg game model

A networked infrastructure system can be formalized in terms of a simple undirected graph G(V , E), where V is the set
of nodes and E ⊆ V × V is the set of edges. The number of nodes |V | is denoted by N . Suppose A(G) = (aij)N×N be the
adjacency matrix of G, where aij = aji = 1 if nodes vi and vj are adjacent, and aij = aji = 0 otherwise. The degree of node vi

is ki =
∑N

j=1 aij, which equals the number of edges connected to it.
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In this paper, we consider the situation where one defender can commit to a strategy, either a pure strategy or a mixed
one, to obtain a higher payoff, and one attacker can observe the strategy that the defender has committed to with historical
information and then choose its own strategy. Thus, in this Stackelberg game, the defender is the leader and the attacker
is the follower. It is assumed that both the defender and the attacker can obtain the complete information of the target
network and potential strategies of the opponent. Besides, the available resources of each other and costs of each target are
also known by both players before they play the game.

2.1. Cost model

We assume that both the attack and the defense approaches are against nodes because the attack against nodes may
induce more serious consequences. If one node is removed, the attached edges are also removed from the network. Denote
by cAi and cDi the attack cost and defense cost of node vi, respectively, with the following forms

cAi = rip, cDi = riq, (1)

where ri ≥ 0 is a certain referential property of node vi and p ≥ 0 (q ≥ 0) is the attack (defense)-cost-sensitive parameter. In
this equation, it is clear that the cost is determined by the referential property of vi as well as the cost-sensitive parameters
of the players. The referential property ri can be the degree, the betweenness or some other structural measures of nodes.
In the extreme case where p = 0 (q = 0), the attack (defense) costs toward each target are completely equal, regardless
of the referential property. When p and q are large, the removal or defense of the node whose referential property is larger
costs the players more resources. Besides, the parameters p and q are exogenously determined by the specific systems. For
example, the protection costs among different computers in a computer network are almost identical. However, the hub
stations in a railway network are much costlier for the attacker to attack and also requires more resources to defend. In
real-world scenarios, the maximal available resources of the attacker and defender are always limited, which are defined as

ĈA
= α

N∑
i=1

cAi = α

N∑
i=1

rip, (2)

and

ĈD
= β

N∑
i=1

cDi = β

N∑
i=1

riq, (3)

respectively, where α ∈ [0, 1] is the attack-cost-constraint parameter and β ∈ [0, 1] is the defense-cost-constraint parameter.
The parameters α and β reveal how many resources the players can devote to their actions. With the increase of α, there
are more targets that the attacker can attack when taking the same attack strategy. In the extreme case that α = 1, all the
targets can be attacked by the attacker.

2.2. Strategies

Suppose V A
⊆ V be the set of nodes that are attacked. An attack strategy is defined as X = [x1, x2, . . . xN ] ∈ SA, where SA

is the strategy set of the attacker and xi = 1 if the node vi is attacked, namely, vi ∈ V A, otherwise xi = 0. Let CX be the total
cost of the attack strategy X , which is defined as

CX =

∑
vi∈VA

cAi =

N∑
i=1

xicAi =

N∑
i=1

xirip. (4)

Therefore, the budget constraint of the attacker is

CX =

N∑
i=1

xirip ≤ ĈA
= α

N∑
i=1

rip. (5)

Any solution X that satisfies this constraint is a feasible attack strategy. Similarly, a feasible defense strategy also satisfies

CY =

N∑
i=1

yiriq ≤ ĈD
= β

N∑
i=1

riq, (6)

where Y = [y1, y2, . . . yN ] ∈ SD is a defense strategy defined in the same way as the attack strategy.
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Fig. 2. Payoff matrix of the security game.

2.3. Payoffs

We assume that if a node vi is defended (yi = 1), it will not be removed when the attacker attacks it. However, a node
with no defense will be removed from the network when it is attacked, that is, xi = 1 and yi = 0. Suppose the set of nodes
that are removed be V̂ ⊆ V . Thus, the network after the removing process is Ĝ = (V − V̂ , Ê). It is easy to identify that

V̂ = V A
− V A

∩ VD. (7)

Suppose UA
: SD × SA → R be the payoff function of the attacker and UA(Y , X) be the payoff received by the attacker when

the defender commits to the strategy Y and the attacker chooses the strategy X . Thus, the payoff of the attacker is defined
as

UA(Y , X) =
Γ (G) − Γ (Ĝ)

Γ (G)
, (8)

where Γ is the measure function of network performance. We assume that the network performance declines during the
process of nodes removals,whichmeansΓ (G1) ≤ Γ (G2) ifG1 = (V1, E1) is a subgraph ofG2 = (V2, E2). The commonmeasure
functions include the size of the largest connected component and the efficiency. The attacker’s payoff function means that
the attacker can obtain a higher payoff when the network performance declines to a larger extent. Let G̃ = (V − V A, Ẽ) be
the network when all the attacked nodes are removed with no defense. We define the payoff of the defender as

UD(Y , X) =
Γ (Ĝ)
Γ (G)

exp
Γ (Ĝ) − Γ (̃G)

2Γ (G)
. (9)

In this equation, the first factor Γ (Ĝ)/Γ (G) represents the network performance after the attacked nodes are removed. It is
apparent that the defender will obtain higher payoffs when the target network maintains higher performance. Besides, the
second factor shows the effectiveness of defense, whichmeans that themore attacked nodes are defended, the higher payoff
that the defender will obtain. It needs to be emphasized that the network performance is the principal factor affecting the
defender’s payoff.

2.4. Security game with typical attack and defense strategies

The attack and defense strategies defined in Eqs. (5) and (6) have extremely large strategy space with large network size
N . For example, in a network with N = 100, | SA |= 2N

≈ 1030 when α = 1 and p = 0. The size of strategy profiles | SD ×SA |

is even larger and few techniques are available to solve this game model using brute force. Moreover, the payoff functions
defined above do not have explicit formulations. Thus, the efficient methods to solve Stackelberg gameswith decomposition
process and compact representation adopted in previous studies are not executable in our gamemodel [25,26]. It is intuitive
that many decision-makers in real-world scenarios generally follow some simple criterion to make their decisions. Thus,
for the convenience of analysis, we consider two typical attack and defense strategies in this paper. The typical attack
strategies are the targeted attack strategy (TAS) (corresponding to ‘‘intentional attack’’) and the random attack strategy (RAS)
(corresponding to ‘‘random failure’’) [34]. The TAS means that the attacker devotes all its resources toward the targets with
the largest referential properties ri. While the RAS indicates that the attacker selects as many targets as possible to attack
randomly. We also consider the defense strategies to be the targeted defense strategy (TDS) and the random defense strategy
(RDS). To obtain a targeted strategy, we first sort the nodes by their referential property in the descending order. Then we
add the targets to the attack (defense) set in this order one by one and check whether the budget constraint is violated. This
process is terminated until the constraint is violated when adding one more node into the set. Therefore, the payoff matrix
with 4 strategy profiles are shown in Fig. 2, where uD

ij (u
A
ij) is the payoff of the defender (attacker) when the defender chooses

strategy i and the attacker takes strategy j. The row player is the defender, which is the leader, and the column player is the
attacker.

3. Methods

As the Stackelberg game we have proposed, the defender is the leader and first commits to a pure strategy or a mixed
strategy. The attacker is the follower and can observe the action made by the defender and makes its own optimal strategy
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Fig. 3. SSE strategies with different p (p = q) and α (α = β). The target network is a random scale-free network whose N = 1000, λ = 3 and ⟨k⟩ = 4. The
probability of the defender (attacker) to take the TDS (TAS) in SSEs corresponds with the horizontal axis, and that of the RDS (RAS) is shown on the vertical
axis. Becausewe only consider two defense and attack strategies, the equilibrium points are at all times on the dashed lines, and pure-strategy equilibriums
are at the two ends of the lines.

accordingly. Thus, the defender’s goal is to find a best strategy to commit to, which guarantees it a best payoff. In this
Stackelberg game model, we use Strong Stackelberg Equilibrium (SSE) as the solution concept, because a SSE exists in all
Stackelberg games [35]. A SSE is a subgame perfect equilibrium where the follower will always choose the optimal strategy
in the leader’s favor in cases of indifference. This solution concept is the most commonly adopted concept in Stackelberg
games [23,24,26]. It is worth mentioning that the random strategy may induce different payoffs in each realization, making
the equilibriums be quite different. Therefore, we analyze the equilibriums based on the payoffs which are averaged over
many independent realizations.

After the payoff matrix shown in Fig. 2 is obtained, we use theMultiple-LPsmethods proposed by Conitzer and Sandholm
[23] to calculate the SSE. Suppose pi be the probability that the defender commits to the defense strategy i ∈ SD. The
defender’s best strategy is computed as

max
∑
i∈SD

piuD
ij∗

s.t.
∑
i∈SD

piuA
ij∗ ≥

∑
i∈SD

piuA
ij ∀j ∈ SA∑

i∈SD

pi = 1

pi ∈ [0, 1] ∀i ∈ SD.

(10)

In Eq. (10), j∗ is the attacker’s best response given the defender’s (mixed) strategy.
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Fig. 4. Payoffs in each strategy profile of the defender (a) and the attacker (b) and equilibrium payoffs in SSE and Nash equilibrium (NE) of the defender (c)
and the attacker (d) versus p (q = p) when α = β = 0.3. The target network is the same one as that in Fig. 3. The probabilities that the defender and the
attacker take the targeted strategy in SSEs are also shown in (a) and (b), respectively. There is a threshold p∗ where the defender takes the RDS which is a
pure-strategy SSE and the attacker shifts to the RAS at the same time when p ≥ p∗ . Apart from the equilibrium payoffs in the SSEs, we also compute the
equilibrium payoffs when the two players act simultaneously and show them in (c) and (d).

4. Equilibrium strategies in scale-free networks

For the ubiquity of scale-free networks in natural and man-made systems, we first explore the equilibrium results in
scale-free networks, whose degree distributions follow P(k) ∼ k−λ, where λ is the degree exponent. We adopt the degree ki
as the referential property ri and the size of the largest connected component as themeasure functionΓ . For the convenience
of analysis, we first assume that p = q and α = β . For each parameter configuration, the payoffs are averaged over 1000
independent realizations.

The SSE strategies of the two players with 3 different cases of p and α are shown in Fig. 3. When p = q = 0.1, the
defender takes the mixed defense strategy, and the attacker adopts the TAS as the best response to the defender’s mixed
strategy. When the cost-sensitive parameters become larger (p = q = 0.5), the equilibriums are different with different
cost-constraint parameters. With loose resource constraints (α = β = 0.1), both players take the random strategy in SSE.
With more available resources (α = β = 0.3 and α = β = 0.5), the defender still chooses the mixed strategy, where the
probabilities of the TDS are approximate to 0, and the attacker takes the TAS. In the third case that p = q = 0.9, the SSEs are
all identical, where the defender commits to the RDS and the attacker’s best strategy is also the RAS.

It seems that the cost-sensitive parameter is the main factor which influences the equilibrium results. To investigate this
influence in depth, we show in Fig. 4 the payoffs in each strategy profile of the two players and their equilibrium payoffs
as a function of p (p = q) when α = β = 0.3. In Fig. 4(a), we show the probability that the defender chooses the TDS in
equilibriums. This probability decreases with p and equals 0 when p ≥ 0.6. Likewise, the attacker changes its strategy from
the TAS to the RASwhen p ≥ 0.6, which can be seen in Fig. 4(b).We denote this thresholdwhere the defender’s SSE becomes
the RDS and the attacker’s best strategy becomes the RAS by p∗. This result can be explained by the change of payoffs with p.



Y. Li, S. Qiao, Y. Deng et al. / Physica A 521 (2019) 705–714 711

Fig. 5. Equilibrium strategies of the two players when p and q are different with α = β = 0.1 (a), α = β = 0.3 (b) and α = β = 0.5 (c). We use the same
target network as that in Fig. 3. The numbers in the blocks represent the probabilities of the TDS in the defender’s mixed-SSEs. The blocks in different colors
show the different equilibrium strategies.

When p = 0.6, as shown by the dashed line in (b), the attacker’s payoff uA
22 becomes larger than uA

21. Besides, u
A
12 is also larger

than uA
11 in this case. Therefore, the RAS becomes the dominant strategy for the attacker, which means that no matter what

the defender does, the attacker will always chooses the RAS. Thus, the defender’s best strategy is the RDS because uD
22 > uD

12,
as can be seen in (a). When p < p∗, the defender commits tomixed strategies where the RDS has a larger probability tomake
the TAS be more preferable for the attacker (pTDS · uA

11 + pRDS · uA
21 > pTDS · uA

12 + pRDS · uA
22), because this can guarantee the

defender a higher payoff (pTDS · uD
11 + pRDS · uD

21 > pTDS · uD
12 + pRDS · uD

22). This SSE means that when the probability of the TDS
is larger than that in SSE, the attacker will no longer take the TAS and the defender loses the chance to ruin all the attacker’s
efforts, which leads to a lower payoff for the defender. With the increase of p, uA

21 decreases, which requires the defender
allocates larger probability on the RDS to make the TAS be more preferable for the attacker.

In Fig. 4(c), we find that the defender’s equilibrium payoffs are much larger than that in the simultaneous game when
p < p∗. When p ≥ p∗, the payoffs in the two games are equal. This is because the equilibrium strategies are identical in
this case, which leads to the same payoffs. As for the attacker, the change of its equilibrium payoffs is not obvious with
different p (in Fig. 4(d)). Besides, the attacker can obtain higher payoffs in SSE than in Nash equilibriumwith small p. But this
improvement is less attracting compared with that of the defender, which proves the first-mover advantage and the merit
of the mixed strategy for the defender in this Stackelberg game.

When p and q are different, the SSEs are shown in Fig. 5. In this figure, we find a similar pattern in the players’ SSEs with
different α (β). For example, when α = β = 0.3, the defender commits to mixed strategies where the probabilities of the
TDS increase with q and decrease with p when p < p∗

= 0.6. This result can be explained by Fig. 6.
In Fig. 6(b), the payoff uA

21 decreases monotonically with p but is still larger than uA
22 when p < p∗. Therefore, as we

have analyzed, the defender commits to mixed strategies and allocates larger probability on the RDS with larger p to make
the attacker choose the TAS and thus gets higher payoffs. When p is fixed, consider a special case that α = β = 0.3 and
p = 0, which can be seen in Fig. 6(c) and (d). It is clear that uA

11 increases significantly with q because the hub targets with
large degrees are so costly to defend that more hub nodes are removed when q is larger. Therefore, the defender allocates
higher probabilities on the TDS with the increasing q. Besides, When α = β = 0.3 and p ≥ 0.6, the defender takes the TDS
which is a pure-strategy equilibrium in the case when q ≤ 0.2 and shifts to the RDS when q > 0.3. This is because when
p ≥ p∗, as we have analyzed, the attacker’s dominant strategy is the RAS. Thus, the defender’s best strategy to commit to is
determined by the payoffs uD

12 and uD
22. When q is small, the defender can protect many hub targets with large degrees and

get a higher payoff (uD
12 > uD

22), leading to the defender’s best strategy to be the TDS. However, when q becomes larger, the
defender defends less targets with the TDS and uD

12 < uD
22. Thus, the defender’s equilibrium strategy becomes the RDS. As for
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Fig. 6. Payoffs in each strategy profile versus p of the defender (a) and the attacker (b)whenα = β = 0.3, q = 0 and that versus qwhenα = β = 0.3, p = 0
(c, d). The target network is the same one as that in Fig. 3.

the attacker, when p < p∗, it takes the TAS at all times, which is the best response to the defender’s mixed strategy. When
p ≥ p∗, the attacker adopts the RAS regardless of q because this is the dominant strategy. In Fig. 5, a special result occurs
when α = β = 0.1, that the defender commits to the TDS when q is extremely large and p is quite small. In this case, uA

11
exceeds uA

12 and the TAS becomes the dominant strategy for the attacker, making the defender’s best response be the TDS.

5. Equilibrium results in different networks

As we have analyzed, the threshold p∗ is a critical indicator of our game model which indicates the equilibrium results.
When the topology structure of the target network changes, the equilibriums will be different and this difference can be
revealed by p∗. To show the equilibrium results in different target networks, we implement simulations in various networks
and show the change of p∗ in Fig. 7. It is clear that p∗ is larger in all networks with more sufficient resources but remains
unchanged when α exceeds a certain value. In scale-free networks (see Fig. 7(a)), p∗ is always larger with a smaller λ and
smaller ⟨k⟩. In ER networks (see Fig. 7(b)), p∗ is equal to 0.1 regardless of α when ⟨k⟩ = 6. Besides, it seems that p∗ is always
smaller in ER networks than in scale-free networks with equal ⟨k⟩. As we have analyzed, when p ≥ p∗ (p = q), both the
players shift to the random strategy and the defender’s equilibrium payoff decreases dramatically. So, a network with a very
small p∗ means that the defender can only obtain relatively higher payoffs when the costs among different targets are quite
homogeneous.

6. Conclusions and discussions

Game theory provides a proper framework to model the confrontations in critical infrastructures between the strategic
attackers and defenders. In some real-world scenarios, the attacker can observe the defender’s moves and then make its
best response. This game is known as Stackelberg game, where the defender commits to a (mixed) strategy first. Strong
Stackelberg Equilibrium (SSE) is the most commonly adopted solution concept in these games. Although many Stackelberg
games have been proposed, little of them consider the infrastructures as networked systems. We believe that the topology
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Fig. 7. The thresholds p∗ versus α when α = β in scale-free networks (a) and in ER networks (b) with various parameters. The solid line in (a) shows the
result in the same target network as in Fig. 3. The size of the networks shown are all N = 1000.

structure of these systems also plays a vital role in maintaining their functionalities and we should take a network science
perspective to protect them. In this paper, we study this sequential-move game and evaluate the payoffs of the players on the
basis of the topology structure. For the convenience of analysis, we only consider two typical defense and attack strategies,
namely, targeted strategy and randomstrategy.We investigate the SSEs of the game in networkswith different cost-sensitive
parameters (p = q) or cost-constraint parameters (α = β) in a random scale-free network. We find that there is a threshold
p∗ where both the players adopt the random strategy when p ≥ p∗. By analyzing the results when p and q are different, we
find that the cost-sensitive parameters are the key factors that affect the equilibrium strategies and p∗ is a critical indicator
of the equilibrium results. Therefore, we further study how p∗ changes versus available resources in various target networks
and find that p∗ is larger in networks with more heterogeneous degree distributions and less connections.

This paper studies a Stackelberg gamewith complete information in critical infrastructures between one defender who is
the leader and one attacker who is the follower, which only considers two typical attack and defense strategies. In our future
work, wewill enlarge the strategy sets and investigatemore efficient algorithms to solve the Stackelberg games in networks.
Moreover, there are many different kinds of attackers who have different goals and they can attack both the nodes and the
arcs in real-world scenarios. So, we will focus on Bayesian Stackelberg games and make the game model more practical in
the future.
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