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ABSTRACT

Evaluating the signi�cance of nodes or links has always been an important issue in complex networks, and the de�nition of signi�cance varies
with di�erent perspectives. The signi�cance of nodes or links inmaintaining the network connectivity is widely discussed due to its application
in targeted attacks and immunization. In this paper, inspired by the weak tie phenomenon, we de�ne the links’ signi�cance by the dissimilarity
of their endpoints. Some link prediction algorithms are introduced to de�ne the dissimilarity of nodes based solely on the network topol-
ogy. Experiments in synthetic and real networks demonstrate that the method is especially e�ective in the networks with higher clustering
coe�cients.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5091608

Various real-world systems can be represented by networks of
nodes connected by links. The structure and function of com-
plex networks attracted a huge amount of attention from many
branches of science. In particular, how the signi�cance of nodes
and links is evaluated is an important issue because of its theo-
retical signi�cance and application value. The essential purpose
of this work is to evaluate link signi�cance in maintaining the
connectivity.

I. INTRODUCTION

A network is a set of nodes with connections between them,
which we call links.1 The complex networks graphically represent
the interactions between the system’s components. Examples include
the cellular network,2 social network,3 power grid,4 and many oth-
ers. Evaluating the nodes’ signi�cancewith some certain structural or
functional objectives has always been a signi�cant issue in studying
complex networked systems.5,6

Due to the wide meaning of signi�cance, many methods have
been proposed from di�erent aspects and have high application
values.7 Based on the nodes’ capacity to impact the behavior of

their surrounding neighbors, the degree centrality,8 LocalRank,9

ClusterRank,10 Coreness, and H-index11 are presented in succession.
These centralities could be used to measure the academic impacts
of researchers or journals based on their publication and citations.
From the viewpoint of information dissemination, the eccentricity,12

closeness centrality,13Katz centrality,14 information index,15 between-
ness centrality,16 and subgraph centrality are given based on paths in
networks. They could help us optimize the use of limited resources
to facilitate information propagation. There are also many itera-
tive re�nement centralities in which both the number of a node’s
neighbors and the in�uence of its neighbors are considered, such
as eigenvector centrality,17 PageRank,18 LeaderRank,19 and HITs.20

These algorithms have pervasive applications, such as ranking web
pages.

In addition to the above applications, the signi�cant nodes also
mean a lot to the immunization of a network against the epidemic
spreading and targeted destruction of networks by targeted attacks.
The main task in these cases is to �nd the nodes that play signif-
icant roles in maintaining the network connectivity. Many heuris-
tic algorithms, such as collective in�uence,21 BPD,22 and explosive
immunization algorithms,23 have also been proposed to identify a
set of critical nodes whose removal is most e�cient in destroying
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the network connectivity. However, in many situations, the nodes’
removal is infeasible, while the link removal is a better choice. For
instance, for many infectious diseases like HIV, a vaccine is not
available.24Wecould only control the spread of the disease bymodify-
ing the network connectivity. Moreover, for networks in which links
are the entity, such as road networks connecting cities,25 the target
of attack or control should be the links rather than nodes. Therefore,
evaluating links’ signi�cance in maintaining connectivity is also an
important issue.

There are several methods presented to quantify the link sig-
ni�cance in maintaining the network connectivity. Based on the
endpoints’ number of neighbors, the degree product index26 consid-
ers those who connect “hub” nodes important. The edge between-
ness centrality index27 assumes that the links passed by many of
the shortest paths are of great signi�cance. The bridgeness index28

considers that the links connecting the larger cliques are of great
importance. It is worth mentioning that the bridgeness is inspired
by the weak tie phenomenon,29 which refers to the fact that the links
with weaker strength may play signi�cant roles in maintaining the
global connectivity.

Generally, the tie strength is characterized through the weight
of the links, which is given by the attribute information on links
or nodes, for instance, the time spent on communication in mobile
communication networks or the content similarity in document net-
works. However, the information on the nodes is usually hard to
obtain. Therefore, we try to de�ne the tie strength based solely on
the network topology. In sociology, another important phenomenon
discussed widely with the weak tie theory is homophily, which shows
that a strong tie tends to form between nodes with similar attributes
in social networks. Examples include that individuals with similar
interest and social status are more likely to establish close interactive
relationships. Therefore, in contrast, the weak tie could be identi�ed
by the dissimilarity of endpoints.

Actually, the issue about the similarity or dissimilarity of
nodes has been extensively discussed in another �eld, named link
prediction.30 The main goal of the link prediction problem is to esti-
mate the existence likelihood of nonobserved links based on the
known topology. Many similarity-based algorithms have been pro-
posed according to the hypothesis that nodes tend to form links with
other similar nodes. Conversely, these algorithms could be used to
de�ne the dissimilarity of twonodes. In this paper, we introduce these
methods to evaluate link signi�cance and study their e�ectiveness
from the perspective of maintaining the network connectivity.

The article is organized as follows. In Sec. II, we de�ne the
dissimilarity of endpoints using link prediction methods and give
a discussion about the selection of algorithms. In Sec. III, we com-
pare some representative algorithms with other existing methods in
both synthetic networks and real networks. Finally, the conclusion
and discussion are given in Sec. IV.

II. EVALUATING LINK SIGNIFICANCE IN MAINTAINING

THE NETWORK CONNECTIVITY USING LINK

PREDICTION METHODS

As we discussed above, because of the importance of weak tie in
maintaining the network connectivity, we present a way to determine
the tie strength based solely on the network structure to evaluate

the link signi�cance in maintaining the network connectivity. Con-
sidering the homogeneity of nodes connected by strong ties, we
could de�ne the tie strength by the dissimilarity of the endpoints.
Therefore, we could de�ne the link signi�cance in maintaining the
network connectivity based on the dissimilarity of endpoints. In this
section, we �rst introduce some link predictionmethods to de�ne the
dissimilarity of the endpoints. Moreover, we give a discussion about
the selection of the algorithms.

A. The link significance in maintaining the network

connectivity based on the dissimilarity of endpoints

A network can be presented by a simple undirected graph
G(V ,E), whereV is the set of nodes, andE is the set of links.Multiplex
links and self-loops are not allowed. According to the above discus-
sion, we de�ne sxy as the scores of the existing links between nodes
x and y. The dissimilarity between endpoints becomes higher as the
value of sxy decreases, and the link between them is more signi�cant
in maintaining the network connectivity.

The issue about the measure of the similarity or dissimilarity
of nodes has been widely studied in link prediction. As the simplest
and most e�ective framework of the link prediction problem, the
similarity-based algorithms are grounded in the empirical evidence
that two entities aremore likely to interact if they are similar, which is
identical to the homogeneity principlementioned above. For improv-
ing the precision of prediction, various indices have been presented
to measure the similarity of nodes based on the structural topology.
On the other hand, these indices also give di�erent de�nitions of the
dissimilarity of nodes.

Wemainly introduce nine link predictionmethods to de�ne the
scores sxy in this paper, and more indices could be found in a review
article.30 These indices could be divided into three categories. The
common neighbors index (CN), the Adamic-Adar index (AA), and
the resource allocation index (RA) are local approaches, which use
the node neighborhood-related structural information to compute
the similarity of nodes. The average commuter time (ACT), Cosine
based on L+ index (Cos+), and the random walk with restart index
(RWR) are global approaches that use the whole network topological
information to score each link. The local path index (LP), the local
random walks (LRW), and the superposed random walks (SRW)
are quasilocal approaches that consider both local and global infor-
mation. The de�nitions of several representative methods are listed
below, and others could be found in Appendixes A–C.

(i) Common neighbors index (CN): For a node x, let 0x denote the
set of neighbors of x. In common sense, two nodes x and y are
more likely to have a link if they have many common neighbors.
The CN index is the direct count of its neighborhood overlap,

sCNxy =
∣

∣0x ∩ 0y

∣

∣ . (1)

(ii) Local path index (LP): The LP index is an index that takes con-
sideration of local paths, with a wider horizon than CN. It is
de�ned as

sLP = A2 + εA3, (2)

where ε is a free parameter. The (A2)xy is the number of common
neighbors between nodes x and y (second-order path). Clearly,
this measure degenerates to CN when ε = 0. If x and y are not
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directly connected, (A3)xy is equal to the number of di�erent
paths with a length of 3 connecting x and y. The parameter ε

is used to control the proportion of the numbers of second- or
third-order paths, and we generally choose a small ε to make
the impact of the second-order path higher than the third-order
path. In this paper, we make the ε = 10−5, when the network
scale does not exceed 105, which guarantees that the elements in
εA3

xy are always smaller than 1.
(iii) Average commute time index (ACT): Denoted by rxy, the average

number of steps required by a randomwalker starting fromnode
x to reach node y, the average commute time between x and y is

nxy = rxy + ryx, (3)

which can be obtained in terms of the pseudoinverse of the
Laplacian matrix L+,

nxy = M(l+xx + l+yy − 2l+xy), (4)

where l+xy denotes the corresponding entry in L+ andM is a con-
stant factor. Assuming two nodes are more similar if they have a
smaller average commute time, then the similarity between the
nodes x and y can be de�ned as the reciprocal of nxy, namely,

sACTxy =
1

l+xx + l+yy − 2l+xy
. (5)

Notably, in the link prediction issue, the algorithms men-
tioned above are initially designed for predicting missing links
in networks, and the scores given by similarity-based algorithms
are calculated in the nodes pair without links connecting. There-
fore, we should know whether these de�nitions are still e�ective
for assessing the dissimilarity of endpoints. So in Sec. II B,
we give a discussion about the selection of the link prediction
algorithms.

B. The selection of the link prediction algorithms

In the initial design process, the above algorithms were calcu-
lated between two nodes without connecting links. Thus, the existing
linksmaymislead the calculation of their endpoints’ similarity scores.
For instance, in Fig. 1, we use the LP algorithm to calculate the sim-
ilarity scores in a sample network. The score of the link connecting
nodes b and c decreases from 0.09 to 0.01 after removing link (b, c),
while other links’ similarity scores are slightly a�ected. According to
the principle of the LP algorithm, we could �nd that the existing link
between nodes would mislead the calculation of the number of the
third-order path. To make use of the link prediction methods with-
out mistake, we need to remove the links between node pairs before
we calculate the similarity score. However, we could not directly
compare the scores given in di�erent network topologies. Thus, we
introduce an iterative calculation method to select the link predic-
tion algorithms below. This method is also named the ranking score
in the link prediction issue.

Giving a network G(V ,E) and a link prediction algorithm, for
every link e ∈ E, wemake the set ET = e. Then, we calculate the score
sxy of all the link in setH = U − E + ET , whereU is the universal set
containing all possible links. The set H concludes all the nodes pair
without links connecting in the network after removing the link e.

FIG. 1. The illustration of a mistake caused by the existing links. The scores of
links calculated by the LP algorithm are shown in (a). After removing link (b, c),
the scores are shown in (b). Because the size of the sample network is only 10,
we make ε = 0.01.

Then, we sort these scores in a descending order and record the rank
of link e as re. We de�ne the ranking score of the link e as

RSe =
re

|H|
. (6)

Note that these scores are calculated between node pairs without
link connecting. So, the misleading phenomenon mentioned above
would not appear in this calculation process.We sort all the links in a
descending order of their ranking score and have rankA. Meanwhile,
we calculate the scores directly in the same network and sort them in
an ascending order to get rank B. Then, we could judge the e�ective-
ness of the link prediction algorithm by comparing the di�erence of
these two ranks. We introduce the Kendall rank correlation coe�-
cient (commonly referred to as Kendall’s tau coe�cient) to measure
the ordinal association between them. This coe�cient depends on
the number of inversions of pairs of objects which would be needed
to transform one rank order into the other.

For the pair of links i and j, the xi and yi are the sequence num-
bers of i in a di�erent order. If both xi < xj and yi < yj, or if both
xi > xj and yi > yj, they are said to be concordant. Otherwise, they
are said to be discordant. The Kendall τ coe�cient is de�ned as

τ =
N1 − N2

1
2N(N − 1)

, (7)

where N1 is the number of concordant link pairs, N2 is the number
of discordant pairs, andN is the total number of the links. Obviously,
when there is a positive correlation between the two ranks, 0 < τ

< 1. Otherwise, −1 < τ < 0. The value of |τ | represents the degree
of correlation. The larger the |τ |, the stronger the positive or negative
correlation of the two ranks is.

The results are shown in Fig. 2. The network we used is a
scale-free network given by the con�guration model.31 We produce
random scale-free networks through the degree distribution p(k)
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FIG. 2. Kendall’s tau coefficient between ranks A and B with 9 different
algorithms. The network used in the experiment is a scale-free network with
N = 1000, λ = 2.5, kmin = 4, and average degree 〈k〉 = 10.952.

= (λ − 1)kλ−1
min k

−λ, where λ is the power-law exponent and kmin is the
smallest degree. As Fig. 2 shows, in the three local indices (CN, AA,
and RA), as well as ACT, the ranks A and B have a strong positive
correlation. In LP, they have a lower positive correlation. However, in
other algorithms, they are almost completely unrelated or even neg-
atively correlated. The in�uence caused by the existing links might
make these indices meaningless.

By analyzing the principle of the algorithm, it is not di�cult to
�nd the reasons behind the phenomenon. The three local indices are
calculated by the information on two endpoints’ common neighbors,
which is not a�ected by the existing links between the nodes. The LP
algorithm is determined by the number of paths with length 2 or 3.
Just as Fig. 1 shows, when there is a link connecting two nodes, the
number of the third-order path would include those who round trip
to the neighbors �rst and then pass this link to arrive at another end-
point. The number of extra computations is related to the degree of
the endpoints. As for the ACT index, it is the reciprocal of the aver-
age commute time given by the average number of steps required by
a random walker starting from one node to another. Thus, the e�ect
caused by the link between endpoints is insigni�cant.

In the rest of the article, we mainly use the three representative
indices to calculate the scores sxy of links in di�erent categories: CN
(local index), LP (global index), and ACT (quasilocal index). Their
details have been given in Sec. II A.

III. EXPERIMENTAL ANALYSIS

In this section, we aim to verify the e�ectiveness of the method
based on the dissimilarity of endpoints through experimental analy-
sis in arti�cial and real networks.

A. The evaluation indices in the link percolation

process

In general, if a signi�cant order of links is e�ective in
maintaining the network connectivity, the network will disintegrate
much faster when we remove the links successively in the descending
order of links’ signi�cance. In other words, in our method, the links

are removed in an ascending order of the scores. This process is also
named as the link percolation process.

1. The giant components

To evaluate the impact of removing links, we use the relative size
of giant components C, which is the fraction of nodes contained in
the giant components, to characterize the network connectivity. If we
remove the links with high signi�cance in maintaining the network
connectivity, C will decrease faster. The parameter q is de�ned as the
proportion of links removed,

q =
mr

m
, (8)

wherem is the number of all links andmr is the number of removing
links. We record the function of the realized size of the giant com-
ponents C over the proportion of q. We also call this link removal
process the link percolation process and the change curve C(q) the
percolation curve.

2. The area under the percolation curve

In addition to visually observing the change in the relative size
of giant components, to demonstrate the impact of the ranking of
critical links on the networks in depth, we also consider the mea-
sure of the network R′ to characterize the overall e�ect of evaluation
methods,32

R′ =
1

m + 1

m
∑

mr=0

Ĉ(mr) ≈

∫ 1

0
C(q)dq, (9)

where Ĉ(mr) is the relative size of the giant component after remov-
ing mr links. The R′ is calculated by the average of the Ĉ when the
�rstmr (mr = 0, 1, . . . ,m) links are removed. C can be seen approx-
imately as a continuous function when the total number of linksm is
large; therefore, R′ could also be de�ned as the area under the perco-
lation curve that corresponds to the integral of the curve C(q). The
value of R′ can comprehensively evaluate the order of the edge signif-
icance in general. The smaller the R′ value is, the more e�ective the
method is. In Sec. II B, we have discussed the selection of link predic-
tion algorithms. Next, we would compare the representative indices
(whose principles have been given in Sec. II A) with other traditional
indices.

B. Other indices for evaluating link significance

In this article, we introduce the three most common methods.
Degree centrality and betweenness centrality are widely used in eval-
uating nodes’ signi�cance in maintaining the network connectivity,
and similar principles have also been used to de�ne the signi�cance
of links.

(i) Degree product: Based on the degree centrality of the links’
endpoints, the degree product has been used in the studies of
biased (degree-dependent) percolation. The degree product is
de�ned as

Dpe = (kxky)
α , (10)

where x and y are two endpoints of link e. kx is the degree of
node x, whose value is the number of adjacent links of node x.
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FIG. 3. The computation time of different methods vs network size N. The
networks used in the experiments are scale-free networks with λ = 2.5 and
kmin = 4.

α is a free parameter. Note that we only care about the order of
the links and thus we choose α = 1. The degree product index
assumes that links connecting two nodes with a high degree
(“hub” nodes) are of great signi�cance. To better compare the
results, we give link percolation processes with removing links
in both ascending order (degree as) and descending (degree des)
order of degree product.

(ii) Edge betweenness centrality: Betweenness was �rst extended
from a graph theoretical notion to both connected and uncon-
nected networks by Freeman in 1977. Then, Girvan generalized
betweenness centrality to links and de�ned the edge between-
ness centrality of a link as the number of shortest paths between
pairs of nodes that run along it. The betweenness centrality is
de�ned as

Bce =
∑

x 6=y

σxy(e)

σxy

, (11)

where σxy(e) is the number of shortest paths from x to y that pass
through link e, and σxy is the number of shortest paths fromnode
x to node y. Generally, if a network contains communities or
groups that are only loosely connected by a few intergroup links,
all shortest paths between di�erent communities must go along
one of these few links. Thus, the links connecting communities
will have high edge betweenness.
Except for the above two indices expended from nodes’ cen-

trality, inspired by a weak tie phenomenon in document net-
works, a local index called bridgeness has also been proposed for
evaluating link signi�cance in maintaining the network global
connectivity.

(iii) Bridgeness: A clique of size k is a fully connected subgraph with
k nodes, and the clique size of a node x or an edge e is de�ned
as the size of the maximum clique that contains this node or this
edge. The bridgeness is de�ned as

Bre =

(

√

SxSy

Se

)γ

, (12)

where Sx and Sy are the clique sizes of nodes x and y, respectively.
Se is the clique size of edge e. The bridgeness shows that the links
between cliques may play a more signi�cant role in maintaining
the global connectivity.

The time complexity of our methods is determined by the prin-
ciple of the link prediction algorithms. The algorithmic complexities
of CN, LP, and ACT are approximately O(Nk3max), O(3N2kmax), and
O(N3), where N is the number of nodes and kmax is the maximum
degree of a node. We further give the time cost of the methods above
in Fig. 3. The results show that the time cost of the betweenness is
signi�cantly higher than that of other methods. The time complexity
of link prediction algorithms is relatively lower and can be adapted
in the calculation of larger scale networks.

C. Experiments in synthetic networks

Due to the ubiquity in the real-world, we �rst focus on scale-free
networks in this study.

FIG. 4. Comparison of methods in random graphs. The size of networks N = 10 000 and the connection probability P = 0.0003 (a), 0.0006 (b), and 0.0009 (c), respectively.
The results are displayed in logarithmic coordinates.
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FIG. 5. Comparison of methods in scale-free networks. Their link percolation processes are given in scale-free networks with the same N = 10 000, λ = 2.5 but different
kmin. The kmin of the networks are 3 (a), 4 (b), and 5 (c), respectively. The average degree 〈k〉 of these three networks is 5.74, 11.53, and 14.41, respectively. The results of
link percolation processes are displayed in logarithmic coordinates.

1. Scale-free networks

Networks with power-law degree distribution have been the
focus of a great deal of attention in the literature. These networks
sometimes are referred to as scale-free networks. Similarly, we gen-
erate a scale-free network by a con�guration model, which has been
presented in Sec. II B. In Fig. 5, we present the link percolation pro-
cesses of three typical indices in scale-free networks with di�erent
average degree 〈k〉 and compare them with the other three evalua-
tion indices, degree product (with both ascending and descending
orders), betweenness and bridgeness. R′ value of each link perco-
lation process is given in the bar graph inside. From the results in
Fig. 5, we �nd that the link predictionmethods generally outperform
the three existing methods. This is especially true when the networks
have a higher average degree, just as Figs. 5(b) and 5(c) show. How-
ever, we could �nd that the percolation curve of LP index is similar
to that of degree product with ascending order (degree as).

To explore the causes of these results, we further experiment in
the other two kinds of special synthetic networks: randomgraphs and
community networks.

2. Random graphs

The random graphs are generated by connecting nodes
randomly.33 Each link is included in the network with a probability
P, independently from every other link. The average degree 〈k〉 of a
random network is N × P approximately. The link percolation pro-
cesses are given in Fig. 4. We noticed that the number of common
neighbors is an important factor used to determine whether the end-
points of a link are similar in our methods. However, the nodes in
random graphs have little common neighbors, which can be seen in
the poor property of network transitivity (or clustering).

We generally use the clustering coe�cient Cl proposed by
Watts and Strogatz to measure the clustering property of networks.34

A local value Clx is given to de�ne the clustering coe�cient of
node x as

Clx =
2Ex

kx(kx − 1)
, (13)

where Ex is the number of actual edges between the neighbors of
node x and kx is the degree of node x. For nodes with degree 0

FIG. 6. Comparison of methods in community networks. The size of networks N = 10 000 and the average degree 〈k〉 = 5.543 (a), 7.915 (b), and 11.95 (c), respectively.
The results are displayed in logarithmic coordinates.
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FIG. 7. The illustration to the top 1% links determined by bridgeness and LP in a
community network with size N = 500.

or 1, we put Clx = 0. Then, the clustering coe�cient for the whole
network is the average

Cl =
1

N

∑

x

Clx. (14)

The clustering coe�cients Cl of the three scale-free networks in
Fig. 5 are 0.0402, 0.0510, and 0.0615, respectively, while the Cl of the
above three random graphs are only 0.00036, 0.00076, and 0.0011,
respectively, which explain the poor performance of our method in
the random graphs.

3. Community networks

We further experiment in arti�cial networks with clear commu-
nity structures. The networks are obtained by a method proposed by
Lancichinetti, whichwas initially used to generate benchmark graphs
for testing community detection algorithms.35,36 The model �rst cre-
ates unconnected communities and then chooses randomly internal
links that are reconnected outside the community. The experimental
results in the community network are shown in Fig. 6. The clustering
coe�cient Cl of the three community networks are 0.4471, 0.4454,
and 0.4499, respectively. We �nd that bridgeness, CN and LP meth-
ods have a similar e�ect in the community networks. The removal of
the edges determined by these methods would cause the network to

collapse rapidly. Di�erently, the bridgeness index is biased to those
links between large communities, while our method based on link
prediction has no such bias. Even due to the special principle of link
prediction algorithms, like LP, the links between small communi-
ties or nodes with a lower degree have advantages. We can see the
di�erence between them visually through the visualization in Fig. 7.

Meanwhile, we found that compared with the above three algo-
rithms, the ACT algorithm is not performing well in the community
networks, which indicates that the average commute time (ACT) of
randomwalker between two nodes is not sensitive to the community
structure of the network. Although ACT has an excellent perfor-
mance in many other networks, CN and LP are more dominant from
identifying links between communities.

D. Experiments in real networks

The arti�cial networks facilitate our quantitative analysis but
ignoringmany situations that exist in real datasets. Therefore, we fur-
ther experiment in eight real networks below. All these networks are
undirected and unweighted.

(1) Euroroad is a road network located mostly in Europe.37 Nodes
represent cities and, a link between two nodes denotes that they
are connected by an E-road.

(2) Adolescent health is a network of friendship of adolescent
students.38

(3) Email is a network generated using email data. Nodes of
the network are email addresses and if an address is sent
at least one email to another address, an undirected link is
created.

(4) Hamsterster is a network containing friendships between users
of the website hamsterster.com.

(5) Chess is a network bout chess games. Each node is a chess player,
and a link represents a game between two players.

(6) C�nder google is a hyperlink network from pages within
Google’s own sites (on google.com).

(7) Astroph is a collaboration network of authors of scienti�c papers
from the arXiv’s Astrophysics (astro-ph) section. A link between
two authors represents a common publication.

(8) Politic Blog is a network of US political blogs. A node rep-
resents a blog, and a link represents a hyperlink between two
blogs.

TABLE I. The basic data for the eight real networks. The first column identifies the names of the networks. For each, we report in the following columns: the number of nodes

n, the total number of links m, the average degree 〈k〉, the maximum degree kmax and the clustering coefficient Cl. We arrange the networks according to their average degree.

Network n m 〈k〉 kmax Cl

Euroroad 1174 1417 2.41 10 0.017
Adolescent_health 2539 10 455 8.24 27 0.147
Email 1133 5451 9.62 71 0.22
Hamsterster 1858 12 534 13.49 272 0.141
Chess 7301 55 899 15.31 181 0.177
C�nder_google 15 763 149 456 18.96 11 401 0.526
Astroph 18 771 198 050 21.10 504 0.631
Politic_Blog 1222 16 714 27.36 351 0.32
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FIG. 8. Comparison of methods in eight real networks. The results are displayed in logarithmic coordinates.

These networks’ datasets can also be downloaded from
KONECT.39 The basic data for these networks are shown in Table I.

The link percolation processes of di�erent methods in real
networks are shown in Fig. 8. The values of R′ are presented in Fig. 9.
We found that our dissimilarity based method is e�ective in most
of the real networks, especially in those large social networks with a
higher clustering coe�cient. Meanwhile, we found that in the Euro-
road network composed of the main roads between the cities of

FIG. 9. The R′ in real networks.

Europe [Fig. 8(a)], the clustering coe�cient is only 0.017. Therefore,
it is hard to identify the dissimilarity of nodes based solely on the
topology information and our methods have poor performance in
this network.

IV. CONCLUSION AND DISCUSSION

In this paper, we introduce some indices from the link pre-
diction issue and use the dissimilarity of endpoints to de�ne the
signi�cance of the links. Considering the mislead that may be caused
by the existing link betweennode pairs, we give a discussion about the
selection of link prediction algorithms. Experiments in both arti�-
cial and real networks show that removing links with the signi�cance
determined by our method leads to faster collapse of the networks.
Meanwhile, we prove that our method is suitable for networks with
higher clustering coe�cients.

Di�erent from the traditional methods which are based on end-
points’ centrality or clique information, our method provide a new
way to evaluating link signi�cance in maintaining the network con-
nectivity. According to the algorithmic principle, these dissimilarities
are always de�ned by the number of accessible paths. The values of
CN and LP algorithms are determined by the number of paths con-
necting nodes. In the ACT algorithm, the average commute time of a
randomwalker is also signi�cantly a�ected by the number of accessi-
ble paths. If there are few reachable paths between two nodes, the link
between them is less replaceable. Therefore, the network connectivity
would be seriously a�ected by those links’ removal.

In this paper, we only tested some typical algorithms and con-
ducted a preliminary analysis, which is far from providing a satis-
factory answer. In the following work, we could test more existing
link prediction algorithms or design some new de�nitions of dis-
similarity. It is also a good idea to improve the performance of
indices by combining some existing methods. At the same time,
aside from their roles in maintaining connectivity, the performance
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of similar methods in the network dynamics and other �elds is also
an important topic.
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APPENDIX A: LOCAL INDICES

1. Adamic-Adar index (AA)

This similarity measure re�nes the simple counting of common
neighbors by assigning the less-connected neighbors more weights.
For two nodes x and y, the AA index can be written as

sAAxy =
∑

z∈0(x)∩0(y)

1

log |0(z)|
, (A1)

where 0(x) is the set of neighbors of x.

2. Resource allocation index (RA)

This index is motivated by the resource allocation process that
take place in complex networks. It models the transmission of units
of resources between two nodes, x and y, which are not directly con-
nected. The similarity between x and y can be de�ned as the amount
of resource y received from x, which is

sRAxy =
∑

z∈0(x)∩0(y)

1

|0(z)|
. (A2)

APPENDIX B: GLOBAL INDICES

1. Cosine based on L+(Cos+)

This index is an inner-product-basedmeasure. In the Euclidean

space spanned by vx = 3
1
2UTEex, where U is an orthonormal matrix

made of the eigenvectors of L+ ordered in the decreasing order of
the corresponding eigenvalue λx,3 = diag(λx), Eex is anN × 1 vector
with the xth element equal to 1 and others all equal to 0, and T is the
matrix transposition, the pseudoinverse of the Laplacian matrix are
the inner products of the node vectors, l+xy = vTx vy. Accordingly, the
cosine similarity is de�ned as the cosine of the node vectors

scos
+

xy = cos (x, y)+=
vTx vy

|vx| ·
∣

∣vy
∣

∣

=
l+xy

√

l+xx · l+yy

. (B1)

2. Random walk with restart (RWR)

This index is a direct application of the PageRank algorithm.
Consider a random walker starting from node x, who will iteratively
moves to a random neighbor with probability c and return to node

x with probability 1 − c. Denote by qxy the probability this random
walker locates at node y in the steady state, we have

Eqx = cPTEqx + (1 − c)Eex, (B2)

where P is the transition matrix with Pxy = 1
kx

if x and y are con-
nected, and Pxy = 0 otherwise. The solution is straightforward, as

Eqx = (1 − c)(I − cPT)
−1

Eex. (B3)

The RWR index is thus de�ned as

sRWR
xy = qxy + qyx, (B4)

where qxy is the yth element of the vector Eqx. In this paper, we have
c = 0.9.

APPENDIX C: QUASILOCAL INDICES

1. Local random walks (LRW)

A random walker is initially put on node x and thus the initial
density vector Eπx(0) = Eex. This density vector evolves as Eπx(t + 1)
= PT Eπx(t) for t > 0. The LRW index at time step t is thus de�ned as

sLRWxy (t) = qxπxy(t) + qyπyx(t), (C1)

where q is the initial con�guration function. In this paper, we have

qx = kx
M
and πxy =

ky

M
.

2. Superposed random walks (SRW)

In the SRW index, the randomwalker is continuously released at
the starting node, resulting in a higher similarity between the target
node and the nodes nearby. The mathematical expression reads

sSRWxy (t) =

t
∑

τ=1

sLRWxy (τ ) =

t
∑

τ=1

[qxπxy(τ ) + qxπyx(τ )], (C2)

where t denotes the time steps. In this paper, we have t = 3.
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